微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、如果甲比乙多20%,乙比丙多20%,则甲比丙多百分之多少?_____
A: 44B: 40C: 36D: 20
参考答案: C 本题解释:答案:C【解析】这道题实际只要考虑五个五个一数最后剩一个,三个三个一数最后剩一个,即可。这两个最好思考。只有501与421一幕了然,除以5余1。而501能被3整除,只有42。
2、现有一批货物共37吨需要运输,有两种货车供选择,其中大车载重7吨,小车载重4吨,现需一次拉完且车都满载,问共需大小货车多少辆?_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:【答案】C。解析:设需要大、小货车各x、y辆,依题意有7x+4y=37。7÷4=1…3,37÷4=9…1,因此x不能为1。x=3时,解得y=4,符合题意,需要的货车数量为3+4=7(辆)。
3、小张每连续工作5天后休息3天,小周每连续工作7天后休息5天。假如3月1日两人都休息,3月2日两人都上班,问三月份有多少天两人都得上班?_____
A: 12B: 14C: 16D: 18
参考答案: B 本题解释:【答案】B。解析:解析1:前者8天一个循环周期,后者12天一个循环周期,两者最小公倍数为24。在三月份中从3月2日到3月25日,两人重合的工作天数为9天。在3月26日至3月31日的6天中,前5天两人同时工作。因此共计14天。故正确答案为B。解析2:用图表示如下,其中×表示工作,○表示休息,下图从3月2日起:小张:×××××○○○×××××○○○×××××○○○×××××○小周:×××××××○○○○○×××××××○○○○○××××××由图可知有14天两人都得上班。故正确答案为B。
4、学校安排学生住宿,每个房间住6人还有2个空房间,如果每个房间住5人,则有1个房间里住的是3人,问:学校共有( )个房间?
A: 8B: 9C: 10D: 11
参考答案: C 本题解释:C【解析】假设学校有学生χ人,有房间y间,所以有6(y-2)=χ,5y-2=χ,由此可以得至χ=48,y=10。
5、共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有_____个。
A: 2B: 3C: 5D: 7
参考答案: A 本题解释:【答案】A。解析:设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
6、某年10月份有四个星期四,五个星期三,这年的10月8日是星期_____。
A: 一B: 二C: 三D: 四
参考答案: A 本题解释:【答案】A。解析:根据题意,10月份的31号肯定是星期三,以此推断10月10号也是星期三,那么10月8日应该是星期一。
7、一个金鱼缸,现已注满水。有大、中、小三个假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中。现知道每次从金鱼缸中溢出水量的情况是:第一次是第二次的1/3,第三次是第二次的2倍。问三个假山的体枳之比是多少?_____
A: 1:3:5 B: 1:4:9 C: 3:6:7 D: 6:7:8
参考答案: B 本题解释:【答案】B。解析:本题的关键是要注意第二次把中假山放入水里的时候,浴缸水不满,缺少的部分恰好是小假山的体积。已知第一次溢出的水是第二次溢出的水的1/3,即第二次溢出的水的体积是中假山和小假山的体积差,可以推导出小假山与中假山体积比为1:4,此时可直接选出正确答案为B。
8、有两个山村之间的公路都是上坡和下坡,没有平坦路。客车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时。现知客车在两个山村之间往返一次,需要行驶4小时。请问这两个山村之间的距离有多少千米?_____
A: 45B: 48C: 50D: 24
参考答案: B 本题解释: 【解析】B。根据平均速度公式可知,全程的平均速度是:
,全程的平均速度是:
。(已知往返速度,求全程的平均速度,是有简便的算法的,要熟练把握。)两山村之间的路程是:(24×4)2=48千米。
9、计算19961997×19971996-19961996×19971997的值是_____。
A: 0B: 1C: 10000D: 100
参考答案: C 本题解释:C【解析】原式=(19961996+1)×19971996-19961996×(19971996+1)=19971996-19961996=10000
10、某市财政局下设若干处室,在局机关中不是宣传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247C: 198D: 212
参考答案: D 本题解释: 【解析】由题意有:
人。所以选D。
11、某公司要到外地去推销产品,产品成本为每件3000元。从公司到外地距离是400千米,运费为每件产品每运1千米收1.5元。如果在运输及销售过程中产品的损耗是10%,那么公司要想实现25%的利润率,零售价应是每件多少元? _____
A: 4800B: 5000C: 5600D: 6000
参考答案: B 本题解释:【答案】B。解析:以1件商品为例,成本为3000元,运费为1.5×400=600元,则成本为3000+600=3600元,要想实现25%的利润率,应收入3600×(1+25%)=4500元;由于损耗,实际的销售产品数量为1×(1-10%)=90%,所以实际零售价为每件4500÷90%=5000元。
12、一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之。既没有空调也没有高级音响的汽车有几辆?_____
A: 2B: 8C: 10D: 15
参考答案: A 本题解释: A 【解析】做这样的题最好用画图法。
13、有a、b、c三个数,已知a×b=24,a×c=36,b×c=54,求a+b+c=_____
A: 23B: 21C: 19D: 17
参考答案: C 本题解释: C 解析:此题最好用猜证结合法。试得a、b、c分别为:4、6、9,故选C。若要正面求解:则由前两个式子可得b=2c/3,代入第三个式子可得c=9,进而求得a=4,b=6。,a2=24×36÷54=16,所以a=4,则b=6,c=9,故a+b+c=19。
14、纸上写着2、4、6三个整数,改变其中任意一个,将它改写成为其他两数之和减1,这样继续下去,最后可以得到的是_____。
A: 595、228、368B: 44、95、50C: 103、109、211D: 159、321、163
参考答案: A 本题解释:A。
15、大小两个数的和是50.886,较大数的小数点向左移动一位就等于较小的数,求较大的数是_____。
A: 46.25B: 40.26C: 46.15D: 46.26
参考答案: D 本题解释:【答案】D。解析:观察选项发现,大数小数点后有两位,因为大小两个数的和是50.886,说明小数小数点后应该有三位,并且尾数为6,排除A、C选项。B选项,40.26小数点左移一位变为4.026,40.26+4.026=44.286≠50.886,排除B选项。D选项,46.26小数点左移一位变为4.626,46.26+4.626=50.886,因此,本题答案为D选项。
16、某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?_____
A: 500B: 600C: 400D: 450
参考答案: B 本题解释:【解析】B。25×24=600
17、现有一个无限容积的空杯子,先加入1克酒精,再加入2克水,再加入3克酒精,再加入4克水,……,如此下去,问最终杯子中酒精溶液浓度为多少?_____ B: 25%C: 33.3%D: 50%
参考答案: D 本题解释:【解析】D。如果把加一次酒精和水看成一个流程,则经过n个流程后,杯子里面有1+3+5+…+(2n-1)=1/2n(1+2n-1)=n2克酒精,而酒精溶液有1+2+…+2n=1/2×2n(1+2n)=n(1+2n)克。故此时酒精溶液浓度为n2/n(1+2n)=n/(2n+1),当n趋于无穷大时,溶液浓度趋于1/2=50%。思路点拨:极端法,当加入酒精或水的量极大时连续两次操作水与酒精的差距对整体的影响可以忽略不计,因此必然各占50%。
18、从甲地到乙地先有一段上坡路,从甲地到乙地的上坡路长度是下坡路长度的2倍,而上坡的速度是下坡的1/3,如果从甲地到乙地时间为56分钟,若保持上下坡的速度不变,那么从乙地到甲地时间为_____分钟。
A: 40 B: 50 C: 60 D: 42
参考答案: A 本题解释:A【解析】依照题意,设甲地到乙地下坡路的长度为x,上坡路的长度为2x,上坡的速度为y,下坡的速度为3y。根据时间=路程÷速度,可列出方程,化简得到=8。求从乙地到甲地的时间,上下坡的长度正好相反,列出方程=5×8=40分钟。
19、3×999+8×99+4×9+8+7的值是:_____
A: 3840B: 3855C: 3866D: 3877
参考答案: A 本题解释:A。四个选项尾数各不相同,可考虑结果的尾数。7+2+6+8+7=30,所以尾数为0,故选A。
20、出租车队去机场接某会议的参会者,如果每车坐3名参会者,则需另外安排一辆大巴送走余下的50人;如每车坐4名参会者,则最后正好多出3辆空车。问该车队有多少辆出租车?_____
A: 50 B: 55 C: 60 D: 62
参考答案: D 本题解释:【解析】D.方程问题。设有x辆出租车,由题意列方程:3x+50=4(x-3),解得x=62.
21、小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?_____
A: 144B: 136C: 132D: 128
参考答案: C 本题解释:C。
22、现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是_____。
A: 1/2B: 1/4C: 1/8D: 1/16
参考答案: D 本题解释:【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。
23、某试卷共25题,答对的,一题得4分;答错或不答的,一题扣1分,小王得了60分,则小王答对了多少题?_____
A: 14B: 15C: 16D: 17
参考答案: D 本题解释: D [解析] 设答对了x道题,则未答对的题为(25-x)题,可得4x-(25-x)×1=60,解得x=17。故本题选D。
24、设有9个硬币,其中有1分、5分、1角以及5角四种,且每种硬币至少有1个。若这9个硬币总值是1.77元,则5分硬币必须有几个?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:C。【解析】由题意知,每种硬币至少有1个,则知四种硬币各1个共0.66元,又由于硬币总值为1.77元,则还需增加1.11元,即5个硬币,从而需硬币1分1个,硬币5角2个,最后还需有1角。由于题意表明有9个硬币,应选2个5分硬币,因而共有3个5分硬币。
25、假定一对刚出生的小兔一个月能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。如果一切正常没有死亡,公母兔也比例适调,那么一对刚出生的兔子,一年可以繁殖成_____对兔子。
A: 144B: 233C: 288D: 466
参考答案: A 本题解释:【答案】A。解析:先列举出经过一到六个月兔子的对数分别是1、1、2、3、5、8。很容易发现这个数列的特点:即从第三项起,每一项都等于前两项之和。按这个规律写下去,便可得出一年内兔子繁殖的对数:1、1、2、3、5、8、13、21、34、55、89、144。可见一年内兔子共有144对。故正确答案为A。
26、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
27、123456788×123456790-123456789×123456789=_____。
A: 0B: 1C: 2D: -1
参考答案: D 本题解释: D [解析] 原式=(123456789-1)×(123456789+1)-1234567892=1234567892-1-1234567892=-1故选D。
28、在直线上两个相距一寸的点A和B上各有一只青蛙,A点的青蛙沿直线跳往关于B点的对称点Al,而B点的青蛙跳往关于A点的对称点B1。然后A1点的青蛙跳往关于B1点的对称点A2,B1点的青蛙跳往关于A1点的对称点B2,如此下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多长距离?_____
A: 364寸B: 1088寸C: 1093寸D: 2187寸
参考答案: C 本题解释:C【解析】两只青蛙各跳一次,两只青蛙的距离为原来的3倍,所以跳7次后,两只青蛙的距离为A7B7=37×1=2187(寸)。而且A7在右,B7在左,由对称性可知B7A=BA7,所以BA7=
(寸),故本题正确答案为C。
29、两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20厘米,另一只只能走15厘米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。问井深是多少厘米?_____
A: 150B: 180C: 200D: 250
参考答案: A 本题解释:A【解析】两只蜗牛白天路程差为20×5-15×6=10(厘米)。因为最终到达井底,所以蜗牛黑夜下滑的速度为每夜10÷(6-5)=10(厘米)。井深为(20+10)×5=150(厘米)。因此,正确答案为A。
30、四个相邻质数之积为17017,他们的和为_____
A: 48B: 52C: 61D: 72
参考答案: A 本题解释: 【解析】A。17017分解因数为17×13×11×7,他们的和为48。参考答案解析
31、某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买,后来不得不按38%的利润重新定价,这样出售了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原定价的_____。
A: 75%B: 50.%C: 62.5%D: 45%
参考答案: C
32、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。
由图可知;只参加一个项目的有l+2=3=6名。
33、有一些数字卡片,卡上的数字都是3、5或者15的倍数,其中是3的倍数的卡片占到总数的2/3,5的倍数的卡片占到总数的3/4,15的倍数的卡片共有15张,那么这些卡片一共有多少张?_____
A: 12B: 24C: 36D: 48
参考答案: C 本题解释:【答案】C。解析:根据题意,卡片上的数字是15倍数的卡片占2/3+3/4-1=5/12,则共有卡片15÷5/12=36张。
34、一批商品,按期望获得50%的利润来定价,结果只销售掉70%的商品,为尽早销售掉剩下的商品,商店决定按定价打折出售,这样所获得的全部利润,是原来所期望利润的82%,问打了多少折扣?_____
A: 4折B: 6折C: 7折D: 8折
参考答案: D 本题解释:【答案】D。解析:设共有商品10件,每件成本为10元,则原定价为10×(1+50%)=15元,共卖出10×70%=7件商品,利润为10×50%×7=35元,剩余3件。10件商品总利润为10×10×50%×82%=41元,设剩余3件所打折扣为x,则由题意得35+(15x-10)×3=41,解得x=0.8,故正确答案为D。
35、甲、乙二人2小时共加工54个零件,甲加工3小时的零件比乙加工4小时的零件还多4个。甲每小时加工多少个零件?_____
A: 11B: 16C: 22D: 32
参考答案: B 本题解释: 【解析】B。解法一、设俩人速度分别为x、y,则2x+2y=54,3x-4y=4,解得x=16;解法二、从第一句话知D不对。从第二句话中知甲每小时加工的零件是4的倍数。
36、有一种红砖,长24厘米、宽12厘米、高5厘米,问至少用多少块这种砖才能拼成一个实心的正方体?_____
A: 600块B: 1200块C: 1800块D: 2400块
参考答案: B 本题解释:B。
37、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比为15%;第二次又加入同样多的水,糖水的含糖量百分比为12%;第三次加入同样多的水,糖水的含糖量百分比将变为多少? _____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:C。【解析】设第一次加入糖水后,糖水的量的为100,则糖的量为15,第二次加水后,糖水的量为15/12*100=125,即加水的量为125-100=25,第三次加水,百分比为15/(125+15)=10%
38、某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买超过300元的商品,其中300元九折优惠,超过300元的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他―次购买并付款,可以节省多少元?_____
A: 16B: 22.4C: 30.6D: 48
参考答案: A 本题解释:A【解析】统筹优化问题。由题意,第一次付款144元可得商品原价为160元;第二次付款为310元,可得原价为350元。故总价510元,按照优惠,需付款300×0.9+210×0.8=438元,节省了454-438=16元。
39、有3个企业共订阅300份《经济周刊》杂志,每个企业至少订99份,最多订101份,问一共有多少种不同的订法? _____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:B。【解析】份数的选择有99,100,101或100,100,100,则第一种选择有A33=6种订法,6+1=7
40、一项任务甲做要半小时完成,乙做要45 分钟完成,两人合作需要多少分钟完成?_____
A: 12B: 15C: 18D: 20
参考答案: C 本题解释:【解析】直接设90的总量,两人每分钟分别是3和2。所以90/(3+2)=18。
41、某数的百分之一等于0.003,那么该数的10倍是多少?_____。
A: 0.003B: 0.03C: 0.3D: 3
参考答案: D 本题解释:D【解析】某数的百分之一为0.003,则该数为0.3,那么它的10倍为3。故正确答案为D。
42、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲先做3小时后,再由乙接着做,还需要多少小时完成? _____
A: 16B: 18C: 21D: 24
参考答案: C 本题解释:C【解析】设甲、乙两人每小时的工作量x、y,可列方程6x+12y=18x+6y=1 解得x=110y=130,甲先做了110×3,工作还剩1-310=710,故乙还需要710÷130=21 小时。故选C。
43、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:答案:D 解析:根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
44、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
45、某办公室5人中有2人精通德语。如从中任意选出3人,其中恰有1人精通德语的概率是多少?_____
A: 0.5B: 0.6C: 0.7D: 0.75
参考答案: B 本题解释:【答案】B。
46、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,而汽车的速度是他速度的5倍,则此人追上小偷需要_____
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:【解析】D。设小偷速度为V,则他的速度2V,汽车的速度10V。l0秒内小偷走了10V,但车子走了100V,所以距离是110V,而他和小偷的速度差为V,即追上小偷需要110秒。
47、某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%。问:此人盈利或亏损的情况如何?_____
A: 挣了8元 B: 亏了8元 C: 持平 D: 亏了40元
参考答案: B 本题解释: 【解析】B。96×2-[96÷(1+20%)+96÷(1-20%)]=192-200=-8,亏了8元。
48、牧羊人正在放牧,一个人牵着一只羊问他。“你的羊群有多少只?”牧羊人答道:“这群羊加上一倍,再加上原来羊群的一半。又加上原来羊群的四分之一,算上你牵来的羊,正好满一百只。”请问,牧羊人的羊群有多少只?_____
A: 32只B: 34只C: 36只D: 38只
参考答案: C 本题解释:C[解析]“原来羊群的四分之一”说明羊群数可以被4整除,排除B、D项;代入答案得C项。
49、商场销售某种商品的加价幅度为其进货价的40%,现商场决定将加价幅度降低一半来促销,商品售价比以前降低了54元。问该商品原来的售价是多少元?_____
A: 324B: 270C: 135D: 378
参考答案: D 本题解释:假设进价是10份,则原来售价是14份,现在售价是12份。差2份是54元,那么14份是54×7=378(元)。
50、已知一列货运火车通过500米的隧道用了28秒,接着通过374米的隧道用了22秒,这列货运火车与另一列长96米的客运火车相对而过,用了4秒钟,问这列客运火车的速度是多少? _____
A: 21米/秒B: 25米/秒C: 36米/秒D: 46米/秒
参考答案: B 本题解释:B。通过题干前两个条件可以先求出货运火车的速度为(500-374)÷(28-22)=21米/秒,则该货运火车的长度为21×22-374=88米。货车与客车相对而过,此时总路程是两车车长的总和,则两车的速度和为(96+88)÷4=46米/秒,客车的速度即为46-21=25米/秒。
51、一个工人加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元。这天他加工的正品是次品的7倍,得款11.25元。那么他这天加工出多少件次品?_____
A: 1B: 3C: 7D: 13
参考答案: B 本题解释:B【解析】 工人加工7件正品得款0.75×7=5.25(元),加工出一件次品罚款1.50元,所以每加工8件产品得款5.25-1.50=3.75(元)。所以他这天加工出的次品是11.25÷3.75=3(件)。
52、甲、乙、丙三队要完成A,B两项工程,B工程工作量比A工程的工作量多1/4 ,甲、乙、丙三队单独完成A工程所需时间分别是20天、24天、30天。为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程,经过几天后,又调丙队与甲队共同完成A工程,那么,丙队甲队合做了多少天? _____
A: 18B: 15C: 10D: 3
参考答案: D 本题解释:【解析】D。解析:三队完成这项工程一共用了
天,乙队一直在做B工程,一共做了
,则B工程剩下的
为丙做的,故丙队与乙队合做了
天,与甲队合做了18-15=3天。
53、某盒灯泡中有3只次品和6只正品(每只均可区分),测试员每次取出一只进行测试,直到3只次品全部测出为止。假如第三只次品在第六次测试时被发现,那么不同的测试情况共有多少种?_____
A: 43200B: 7200C: 60D: 120
参考答案: B 本题解释:B。
54、2 年前甲年龄是乙年龄的2 倍,5 年前乙年龄是丙年龄的1/3,丙今年11 岁,问甲今年几岁?_____
A: 12B: 10C: 9D: 8
参考答案: A 本题解释: 【解析】五年前乙是(11-5)/3=2岁,所以今年是7岁,两年前是5岁。所以2年前甲是10岁,今年是12岁,选A。
55、在所有的两位数中,十位数字比个位数字大的两位数共有多少个?_____
A: 49B: 50C: 56D: 45
参考答案: D 本题解释:【答案】D。解析:十位是9的有9个,十位是8的有8个,……十位是1的有1个,共有:1+2+3+……+9=45个。故应选择D。
56、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级 B: 100级 C: 120级 D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
57、已知
,问X的整数部分是多少?_____
A: 182B: 186C: 194D: 196
参考答案: A 本题解释:A【解析】由题意可知
的整数部分是182,
的整数部分也是182,因此X的整数部分也是182。
58、“红星”啤酒开展“7个空瓶换l瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期问共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?_____
A: 296B: 298C: 300D: 302
参考答案: B 本题解释:由题可知,6个空瓶可以换一个瓶子里面的啤酒,298÷6=49……4,只有49+298=347。
59、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。
60、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: 1400C: 1120D: 1050
参考答案: D 本题解释:【答案】D。解析:主唱分25%,其余5人分75%,所以每人分15%,所以7000×l5%=1050元。
61、一列快车和一列慢车相对而行,其中快车车长200米,慢车车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是_____。
A: 6秒B: 6.5秒C: 7秒D: 7.5秒
参考答案: D 本题解释:D【解析】两车相向而行,故慢车、快车相对速度均为V(快)+V(慢),慢车走的路程为快车车长200米;同理,坐在快车上看慢车,走的距离为250米。故
。
62、有两根长短粗细不同的蚊香,短蚊香可燃8小时,长蚊香可燃的时间是短蚊香的1/2,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短_____。
A: 1/6B: 1/5C: 1/2D: 3/5
参考答案: D 本题解释:D【解析】两根蚊香同时点燃3小时后所剩长度相等,从这里我们可以找出长、短蚊香的长度关系:短蚊香点燃3小时后剩1-1× 3/8=5/8,长蚊香点燃3小时后剩1-(1×3)/(8×1/2)=1/4,即短蚊香的5/8等于长蚊香的1/4,由此可求出短蚊香是长蚊香的几分之几,即5/8短=1/4长,短/长=2/5,所以未点燃之前,短蚊香比长蚊香短1-2/5=3/5。
63、计算1/4+3/8+7/16+15/32+31/64+63/128+127/256+255/512+511/1024=?_____
A: 3×(513/1024)B: 3×(1023/1024)C: 4×(1/1024)D: 4×(511/1024)
参考答案: C 本题解释:【答案】C 解析∶原式=1/2-1/4+1/2-1-8+……+1/2-1/1024=4+1/1024=4×(1/1024)。
64、幼儿园里,老师将一堆桃子分给同学,如果每个同学分3个则余2个,如果每个同学分4个,则有两个同学分不到,该班有多少个同学?_____
A: 10B: 12C: 15D: 18
参考答案: A 本题解释:A【解析】设共有x个同学,由题意得3x+2=4(x-2),解得x=10。
65、100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?_____
A: 43B: 44C: 45D: 46
参考答案: A 本题解释:【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
66、一百张牌抽掉奇数牌,然后再抽掉剩下牌中位于奇数位的牌……如此最后剩下的一张是原来100张牌排序中的第几张呢?_____
A: 63 B: 64 C: 65 D: 66
参考答案: B 本题解释:B
67、某医院内科病房有护士15人,每两人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次这两人再同值班,最长需要几天_____
A: 15B: 35C: 30D: 5
参考答案: B 本题解释:B.【解析】n×(n-1)/2=15×14/2=105,105×8/24=35。故选B。
68、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱;如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了几角几分?_____
A: 27角6分B: 26角4分C: 25角5分D: 26角6分
参考答案: A 本题解释:【解析】A。如果每月用电24度,则应该交24×9=216分钱,即21.6角。答案中没有这个答案,就是说甲已经超过了这个规定数字。设他用了24+M度电,则交了24×9+M×20=216+20×M,甲比乙多交了96分,则216+20×M-96可以被9整除,即(20×M+120)÷9。M=3时,(20×M+120)÷9=2,即甲用了27度电,用了276分。
69、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?_____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
70、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:_____
A: 2%B: 8%C: 40.5%D: 62%
参考答案: D 本题解释:【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。
71、一项工程甲、乙、丙三队合做,先由甲、乙两队合做4天后,余下的由丙队单独做8天完成,若乙队单独做15天完成,丙队单独做20天完成,求甲队单独做_____天能完成?
A: 10B: 12C: 15D: 18
参考答案: B 本题解释:B【解析】1÷[(1-1/20×8)÷4-1/15]=12(天)。
72、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
73、甲、乙、丙、丁四人共同做一批纸盒,甲做的纸盒数是另外三人做的总和的一半,乙做的纸盒数是另外三人做的总和的1\3,丙做的纸盒数是另外三人做的总和的1\4,丁一共做了l69个,则甲一共做了_____纸盒。
A: 780个B: 450个C: 390个D: 260个
参考答案: D 本题解释: 【解析】D。分析题意可知:甲、乙、丙分别做了总纸盒数的
。那么总纸盒数是
个,甲一共做了260个。
74、某月的最后一个星期五是这个月的25号,这个月的第一天是星期几?_____
A: 星期二B: 星期三C: 星期四D: 星期六
参考答案: A 本题解释:A 【解析】因为25=3×7+4,所以这个月的4号也是星期五,故这个月的第一天是星期二。
75、有一段布,裁剪制服6套多12尺,若裁剪8套则缺8尺,则这段布是_____尺。
A: 36B: 72C: 144D: 288
参考答案: B 本题解释:B在本题中宜用列方程法来求解,设每套衣服需用布料x尺,则依题有6x+12=8x-8,解之得x=10,故这段布长为6×10+12=72(尺),正确答案为B。
76、在2011年世界产权组织公布的公司全球专利申请排名中,中国中兴公司提交了2826项专利申请,日本松下公司申请了2463项,中国华为公司申请了1831项,分别排名前3位,从这三个公司申请的专利中至少拿出多少项专利,才能保证拿出的专利一定有2110项是同一公司申请的专利?_____
A: 6049B: 6050C: 6327D: 6328
参考答案: B 本题解释:【答案】B。解析:最值问题。最不利的情况数+1=2109+2109+1831+1=6050;选项尾数不同,可以考虑尾数法。
77、将10克盐和200克浓度为5%的盐水一起加入一杯水中,可得浓度为2.5%的盐水,则原来杯中水的克数是_____。
A: 570B: 580C: 590D: 600
参考答案: C 本题解释:C。
78、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
79、24689-1728-2272的值为_____
A: 689B: 713C: 521D: 479
参考答案: A 本题解释:A【解析】先用心算将两个减数相加,1728+2272=4000。然后再从被减数中减去减数之和,即4689-4000=689。
80、一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了_____棵果树。 B: 3C: 6D: 15
参考答案: B 本题解释:【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。
81、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C解析:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)=6÷(4/5×3/4×2/3×1/2)=6÷1/5=30(厘米)故本题选C。
82、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
83、两辆汽车同时从A、B两站相对开出,在B侧距中点20千米处两车相遇,继续以原速前进,到达对方出发站后又立即返回,两车再在距A站160千米处第二次相遇。求A、B两站距离是A_____。
A: 440千米B: 400千米C: 380千米D: 320千米
参考答案: A 本题解释:A[解析]首先,注意到第一次相遇后到第二次相遇时行的路程是出发到第一次相遇时行的路程的2倍。设A、B两站相距x千米,则第一次相遇时,B车行了(0.5x-20)千米;第二次相遇时,B车共行了(0.5x-20)×3(千米),或一个全长又160千米。列方程,得:(0.5x-20)×3=x+160x=440因此,本题正确答案为A。
84、林文前年买了8000元的国家建设债券,定期3年。到期他取回本金和利息一共10284.8元。这种建设债券的年利率是多少?_____
A: 9.52%B: 9.6%C: 8.4%D: 9.25%
参考答案: A 本题解释:A。【解析】求利息的公式:利息=本金×利率×时间,可得出:利率=利息÷时间÷本金。而他3年所得的利息是:10284.8-8000=2284.8(元);这样即可求出这债券的年利率是多少。(10284.8-8000)÷3÷8000=2284.8÷3÷8000=761.6÷8000=0.0952=9.52%。
85、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?_____
A: 15B: 13C: 10D: 8
参考答案: B 本题解释:最值问题。构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。
86、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?_____
A: 900B: 180C: 270D: 500
参考答案: D 本题解释:【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18%,可知女警官有500人。
87、一个长方体的长、宽、高恰好是三个连续的自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积是_____
A: 74B: 148C: 150D: 154
参考答案: B 本题解释:【解析】B。设该长方体的长、宽、高分别是
。那么有
所以这个长方体的表面积为
88、一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?_____
A: 0.5 B: 1.5C: 1 D: 2
参考答案: C 本题解释:【答案】C。解析:从队尾到队首,这是一个追及过程,追及的路程等于队伍的长。从队首返回队尾,这是一个相遇过程,返回队尾所行的路程都等于队伍的长。
89、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级B: 100级C: 120级D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
90、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释: C解析: 6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷1/5=30(厘米)故本题选C。
91、152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)_____
A: 1B: 7C: 12D: 24
参考答案: A 本题解释:A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。
92、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少_____
A: 50B: 130C: 210D: 390
参考答案: B 本题解释: 【解析】B。由题意可知,2甲+乙=220,甲+2乙=170,两式相加,即3(甲+乙)=390,所以甲+乙=130。
93、黎明对张伟说:当我的岁数是你现在的岁数时,你是4岁;张伟对黎明说:当我的岁数是你现在的岁数时。你是67岁。问黎明、张伟现在多少岁?_____
A: 45岁、26岁B: 46岁、25岁C: 47岁、24岁D: 48岁、23岁
参考答案: B 本题解释:根据选项可知黎明比张伟大。设二者年龄差为x,那么张伟今年是4+x岁,黎明为4+2x岁。当张伟是黎明现在的岁数时,黎明是4+3x岁。因此,4+3x=67,x=21。张伟今年4+21=25岁,黎明25+21=46岁。
94、甲、乙有数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个,如甲、乙二人一起按2元5个卖全部的萝卜,总收入会比预想的1个人少4元,两人共有多少萝卜?_____
A: 420B: 120C: 360D: 240
参考答案: D 本题解释:D。
95、女儿2013年时的年龄是母亲年龄的1/4,40年后女儿的年龄是母亲年龄的2/3。问当女儿年龄是母亲年龄的1/2时是公元多少年?_____
A: 2021 B: 2022 C: 2026 D: 2029
参考答案: D 本题解释:【答案】D。
96、小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,那么小张的车速是小王的_____倍。
A: 1.5B: 2C: 2.5D: 3
参考答案: B 本题解释:【解析】B。行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y;第二次相遇 时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x÷y=2y÷(x-y),解得x=2y,故两人速度比为2:1。
97、甲、乙两车运一堆货物。若单独运,则甲车运的次数比乙车少5次;如果两车合运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次_____
A: 9B: 10C: 13D: 15
参考答案: B 本题解释:【答案】B。解析:工程问题。设甲单独需要x,则乙单独需要x+5,依题意有1/x+1/(x+5)=1/6,解得x=10。
98、某市气象观测,今年第一、第二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同,那么今年上半年该市降水量同比增长了多少? _____
A: 9.5% B: 10% C: 9.9% D: 10.5%
参考答案: C 本题解释:【答案】C 【解析】设今年第一季度和第二季度降水量同比增加绝对量均为99,则去年第一季度降水量为99÷11%=900,第二季度降水量为99÷9%=1100,去年上半年总降水量为1100+900=2000,则今年上半年降水量同比增长率为99×2÷2000=9.9%。因此,选C。
99、在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是_____。
A: 1644B: 1779C: 3406D: 3541
参考答案: D 本题解释:【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。
100、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】选取中间值法,所有分数都接近1/2,1/2-4/9=1/18,1/2-17/35=1/70,1/2-101/203=1/406,1/2-3/7=1/14,1/2-151/301=-1/602,显然151/301大于1/2,故选D。