微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?_____
A: 80B: 79C: 83D: 81
参考答案: B 本题解释:【解析】从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个。故应选择B。
2、浓度为20%的盐水若干克,加入100克水后浓度变为15%,若要将盐水的浓度变为10%,需要再加水多少克?_____
A: 120B: 150C: 180D: 200
参考答案: D 本题解释:【答案】D。解析:设盐水原重x克,将盐水的浓度变为10%需再加水y克。根据题意,得
解得x=300,y=200。故本题答案选D。
3、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。
由图可知;只参加一个项目的有l+2=3=6名。
4、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: l400C: 1120D: 1050
参考答案: D 本题解释:【解析】D。另外5名成员平分余下的收入,每人拿15%,即1050元。
5、A、B、C三件衬衫的价格打折前合计1040元,打折后合计948元。已经A衬衫的打折幅度是9.5折,B衬衫的打折幅度是9折,C衬衫的打折幅度是8.75折;打折前A、B两件衬衫的价格比为5∶4。问打折前A、B、C三件衬衫的价格各是多少元( )
A: 500元,400元,140元 B: 300元,240元,500元C: 400元,320元,320元 D: 200元,160元,680元
参考答案: C 本题解释:C【解析】打折前A、B两件衬衫的价格比为5∶4,不妨设A、B、C三件衬衫的价格打折前价格分别为5x,4x,y元。打折前合计1040元,所以5x+4x+y=1040;已知A衬衫的打折幅度是9.5折,B衬衫的打折幅度是9折,C衬衫的打折幅度是8.75折,则打折后A,B,C的价格分别为4.75x,3.6x,0.875y。打折后合计948元,即4.75x+3.6x+0.875y=948解得x=80,y=320。所以打折前A、B、C三件衬衫的价格各是400,320,320。
6、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。
7、A、B两人从同一起跑线上绕300米环形跑道跑步,A每秒钟跑6米,B每秒钟跑4米,问第二次追上B时A跑了多少圈_____
A: 9B: 8C: 7D: 6
参考答案: D 本题解释:D.【解析】因为是环形跑道,当A第一次追上B时,实际上A比B多跑了一圈(300米),当第二次追上B时,A比B则需多跑两圈,共600米。A比B每秒多跑6-4=2(米),多跑600米需时为600÷2=300(秒)时间。所以可列式为:追及距离÷速度差=追及时间。设圈数为x,则x=6米/秒×300秒÷300米/圈=6圈。故本题正确答案为D。
8、小陈、小张、小赵和小周四个人的平均基本工资为1010元,这次工资调整,他们基本工资分别上调了254元、191元、146元和209元,现在四个人的平均基本工资是_____
A: 1180元B: 1210元C: 1080元D: 1220元
参考答案: B 本题解释: 【解析】B。现在平均基础工资为1010+(254+191+146+209)÷4=1210元。
9、假设7个相异正整数的平均数是14,中位数是18,则次7个正整数中最大数是多少?_____
A: 58B: 44C: 35D: 26
参考答案: C 本题解释:【答案】C。解析:构造数列问题。此题告诉我们平均数是14,则总和为14*7=98,中位数为18,总共7个数,意味着小于18的有3个数,大于18的有3个数,为了保证最大的数大,所以我们要让大于18的数尽可能的小,则其他的两个数我们可以定义为19,20;所以得到的式子为18+19+20+n<98,所以n<41,则小于41的最大选项为35,所以选择C选项。
10、计算:1+1/2+1/4+1/8+1/16+1/32+1/64的值为_____。
A: 63/64B: 2C: 1(63/64)D: 69/67
参考答案: C 本题解释:C解析:第一种解法:1+1/2+1/4+1/8+1/16+1/32+1/64=1+1/2+1/4+1/8+1/16+1/32+(1/64+1/64)-164=1+1/2+1/4+1/8+1/16+(1/32+1/32)-1/64=1+1/2+1/4+1/8+(1/16+1/16)-1/64=1+1-1/64=1(63/64)第二种解法:1,1/2+1/4+1/8+1/16+1/32+1/64为首项为1,公比为1/2的等比数列Sn={1[1-(1/2)7]}/(1-1/2)=(1-1/128)/(1/2)=127/64故本题正确答案为C
11、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢4/5,则此人追上小偷需要_____。
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:答案:D【解析】设某人速度为v,则小偷速为0.5v,汽车速为5v,10秒钟内,与小偷相差(0.5+5)v×10=55v,追求时速差为0.5v,所以所需时间为110秒。
12、王家村西瓜大丰收后,全村男女老少分四个组品尝西瓜,且每组人数正好一样多,小伙子一人吃1个,姑娘两人吃1个,老人三人吃1个,小孩四人吃1个,一共吃了200个西瓜。则王家村品尝西瓜的共有_____。
A: 368人B: 384人C: 392人D: 412人
参考答案: B 本题解释:【答案】B。解析:解法一:设每组有x人,可列方程x+x/2+x/3+x/4=200,解得x=96,则品尝西瓜的人数有96×4=384人。因此,本题答案为B选项。解法二:利用整除关系。由题意,全村人数必须能被3和8整除,只有B满足。因此,本题答案为B选项。
13、正六面体的表面积增加96%,棱长增加多少?_____
A: 20%B: 30%C: 40%D: 50%
参考答案: C 本题解释:【答案】C。解析:根据几何等比放缩性质,表面积为原来的1.96倍时,棱长为原来的1.4倍,因此棱长增加了40%。故正确答案为C。
14、商店卖气枪子弹,每粒1分钱,每粒4分钱,每10粒7分钱,每20粒1角2分钱。小明的钱至多能买73粒,小刚的钱至多能买87粒.小明和小刚的钱合起来能买多少粒? _____
A: 160B: 165C: 170D: 175
参考答案: B 本题解释: 【答案】B。解析:小明子弹73颗,可知买了3个20粒,1个10粒,3个1粒,共有46分钱;同理小刚买了4个20粒,1个5粒,2个l粒,共有54分钱。两人共有100分钱,可以买8个20粒,1个5粒,共卖165粒。
15、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?_____
A: 星期一B: 星期五C: 星期二D: 星期四
参考答案: C 本题解释:C解析:此题乍看上去是求9,6,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,7,8的最小公倍数。既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。(10,7,8的最小公倍数是5×2×7×4=280。280÷7=40,所以下次相遇肯定还是星期二。)
16、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?_____
A: 21B: 24C: 17.25D: 21.33
参考答案: A 本题解释:【解析】A。水量越大,费用越高,所以要用水最多,所以每个月应该用满10吨,所以总吨数为20+(108-100)/8=21.
17、如图所示,半圆与等腰三角形ABC的斜边AC相切,AB=BC=1。
问半圆的直径是多少?_____
A: AB: BC: CD: D
参考答案: C 本题解释:C
18、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在三种昆虫共18只,共有118只脚和20对翅膀,则其中有蜻蜓多少只?_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:【答案】C。解析:假设全是6只脚的昆虫,18只共有108只脚,因此多出的118—108=10(只)脚来自于10÷(8—6)=5(只)蜘蛛。而在剩下的18—5=13(只)昆虫中,假设都是1对翅膀,同样地分析可知,有蜻蜓(20—13)÷(2一1)=7(只)。
19、下列关于日常生活的说法,不正确的是_____。
A: 将装有苏打的盒子敞口放在冰箱里可以除异味B: 医用消毒酒精的浓度为75%C: “坐井观天,所见甚小”是由于光沿直线传播D: 若电脑着火,即使关掉主机、拔下插头,也不可向电脑泼水
参考答案: A 本题解释:可以除异味的是小苏打碳酸氢钠;苏打是碳酸钠,A选项说法错误。医用酒精浓度有75%和95%,95%的酒精常用擦拭紫外线灯;75%的酒精常用消毒,故B项正确。“坐井观天,所见甚小”,因为光是沿直线传播的,光线以井为界线传播进来,井外的光线被挡住不能传播进来,故光线进入眼睛就有限,看见的事物就很小,故C项正确。若电脑着火,泼水后电脑的温度突然降下来,会使炽热的显像管爆裂。此外,电脑内仍有剩余电流,泼水可能引起触电,故D项正确。本题答案为A。
20、某单位今年一月份购买5包A4纸、6包B5纸,购买A4纸的钱比B5纸少5元;第一季度该单位共购买A4纸15包、B5纸12包、共花费510元;那么每包B5纸的价格比A4纸便宜_____。
A: 1.5元B: 2.0元C: 2.5元D: 3.0元
参考答案: C 本题解释:C【解析】方程问题。设A4纸和B5纸的价格分别为x元和y元。由题意可得方程,6y-5x=5,15x+12y=510解得x=20,y=17.5,所以每包纸比A4纸便宜20-17.5=2.5元。答案选择C选项。
21、由1、2、3组成的没有重复数字的所有三位数之和为多少?_____
A: 1222B: 1232C: 1322D: 1332
参考答案: D 本题解释: 【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。
22、赵先生34岁,钱女士30岁,一天,他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说∶他们三人的年龄各不相同,三人的年龄之积是2 450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁? _____
A: 42B: 45C: 49D: 50
参考答案: C 本题解释:【答案】C 解析∶2450=2×5×5×7×7,三人年龄之和为64,分析可知当三人年龄分别为5、10、49时符合题意,年龄最大者是49岁。
23、某企业响应国家发展低碳经济的号召,比去年节约了10%的成本,在收入不变的情况下使得企业的利润提高了30%,则今年的成本占收入的比例为_____。
A: 65%B: 67.5%C: 75%D: 80%
参考答案: B 本题解释:【答案】B。解析:显然去年的成本的10%等于去年利润的30%,因此去年成本占收入的比例为3÷(3+1)×100%=75%,今年的成本下降了10%,而收入不变,因此其所占比例也下降了10%,因此今年所占比例为75%×(1—10%)=67.5%,因此选B。
24、5,3,7三个数字可以组成几个三位数?_____。
A: 8个B: 6个C: 4个D: 10个
参考答案: B 本题解释:B【解析】百位上的数可以在5,3,7三个数中选一个,有3种选法;在确定百位上的数后,十位上的数只有两种选法;百位上和十位上的数确定以后,个位上的数只有一种选法。所以三位数的组成方法共有3×2×1=6(种)。故正确答案为B。
25、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少_____
A: 50B: 130C: 210D: 390
参考答案: B 本题解释: 【解析】B。由题意可知,2甲+乙=220,甲+2乙=170,两式相加,即3(甲+乙)=390,所以甲+乙=130。
26、某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买,后来不得不按38%的利润重新定价,这样出售了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原定价的_____。
A: 75%B: 50.%C: 62.5%D: 45%
参考答案: C
27、有一个项目,由小刘单独做需要3天完成,由小李单独做需要15天完成,而小刘、小李、小王三个人合作需要1.5天完成。问小李和小王两个人合作完成这个项目需要多少天?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:B.【解析】这是一道工程问题。设总工作量为15,那么小刘的工作效率为5,小李的工作效率为1,三人的工作效率为10,那么小王的工作效率为4,也就是小李和小王的效率为5,两人合作需要3天完成。因此,本题的答案为B选项。
28、某学校阅览室看书的学生中,男生占了60%,又进来了一些学生后,学生总人数增加20%,男生人数占原来总人数的75%,则男生增加了多少?_____
A: 15%B: 25%C: 30%D: 50%
参考答案: B 本题解释:B。
29、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
30、红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到队头,然后立即返回队尾,共用10分钟。求队伍的长度。_____
A: 630米B: 750米C: 900米D: 1500米
参考答案: A 本题解释:【答案】A。解析:设王老师从队尾走到队头用x分钟,可列方程(150-60)×x=(150+60)×(10-x),解得x=7分钟,则队伍的长度为(150-60)×7=630米,选择A。
31、在一次有四个局参加的工作会议中,土地局与财政局参加的人数比为5∶4,国税局与地税局参加的人数比为25∶9,土地局与地税局参加人数的比为10∶3,如果国税局有50人参加,土地局有多少人参加?_____
A: 25 B: 48 C: 60 D: 63
参考答案: C 本题解释: 【解析】根据以上比例关系,可得出土地局︰地税局︰国税局=30︰9︰25,所以土地局有60人参加。所以选C。
32、银行存款年利率为2.5%,应纳利息税20%,原存1万元1年期,实际利息不再是250元,为保持这一利息收入,应将同期存款增加到_____元。
A: 15000B: 20000C: 12500D: 30000
参考答案: C 本题解释:C。【解析】令存款为x,为保持利息不变,250=x×2.5%×(1-20%)=>x=12500。
33、某医院有一氧气罐匀速漏气,该氧气罐充满后同时供40人吸氧,60分钟后氧气耗尽,再次充满该氧气罐同时供60个人吸氧,则45分钟后氧气耗尽。问如果该氧气罐充满后无人吸氧,氧气耗尽需要多长时间?_____
A: 1.5小时B: 2小时C: 2.5小时D: 3小时
参考答案: D 本题解释:【答案】D。解析:这是一个变形的牛吃草问题。设原有氧气为M,漏气速度为V,则可得(40+V)×60=(60+V)×45=M,解得V=20,M=3600,如果没人吸氧,则可得耗尽的时间为3600÷20=180分钟,即3小时。故正确答案为D。
34、甲、乙、丙、丁四人步行,在同时间内甲行5步时乙可行6步;乙行7步时丙可行8步;丙行9步时丁可行10步。又甲、乙、丙、丁每步的距离之比为15∶14∶12∶10。问甲行630米时,丁可行多少米?_____
A: 640米B: 680米C: 720米D: 750米
参考答案: A 本题解释:A【解析】将四人步数之比与每步距离之比结合考虑,可推出相同时间内两人所行距离之比,并由此求出丁所行的步数。即甲∶乙=(15×5)∶(14×6)=25∶28,乙∶丙=(14×7)∶(12×8)=49∶48,丙∶丁=(12×9)∶(10×10)=27∶25。可得甲行630米时丁行(28×48×25×630)÷(25×49×27)=640米。故甲行630米时丁行640米。
35、已知两个四位数的差为7930,问这两个四位数的和最大值为多少?_____
A: 12068B: 12560C: 13268D: 13650
参考答案: A 本题解释: 【答案】A。要使两数的和尽量的大,则应使这两个数尽量大,取较大的数为9999,则较小的为9999-7930=2069,它们的和等于9999+2069=12068,选A。
36、8项不同的工程由三个工程队承包,每队至少承包2项,则不同的承包方案有多少种?_____
A: 5880种B: 2940种C: 1960种D: 490种
参考答案: B 本题解释:B【解析】8项不同的工程可以分为2、2、4和2、3、3两种情况,所以共有C28C26A33÷A22+C38C35A33÷A22=2940种。
37、某商场在节日期间实行促销,规定凡是购买200元以上的商品可以优惠20%,那么用300元钱在该商场最多可买下价值多少元的商品?_____
A: 375B: 350C: 340D: 320
参考答案: A 本题解释:A。购买200元以上可以优惠20%,即购买200元以上的商品可以打八折。
38、有一些数字卡片,卡上的数字都是3、5或者15的倍数,其中是3的倍数的卡片占到总数的2/3,5的倍数的卡片占到总数的3/4,15的倍数的卡片共有15张,那么这些卡片一共有多少张?_____
A: 12B: 24C: 36D: 48
参考答案: C 本题解释:【答案】C。解析:根据题意,卡片上的数字是15倍数的卡片占2/3+3/4-1=5/12,则共有卡片15÷5/12=36张。
39、甲、乙二人2小时共加工54个零件,甲加工3小时的零件比乙加工4小时的零件还多4个。甲每小时加工多少个零件?_____
A: 11B: 16C: 22D: 32
参考答案: B 本题解释: 【解析】B。解法一、设俩人速度分别为x、y,则2x+2y=54,3x-4y=4,解得x=16;解法二、从第一句话知D不对。从第二句话中知甲每小时加工的零件是4的倍数。
40、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数比原数的3倍少39。求这个三位数_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释: 【解析】C。代入验证,A项
符合题意。故选C。
41、2 年前甲年龄是乙年龄的2 倍,5 年前乙年龄是丙年龄的1/3,丙今年11 岁,问甲今年几岁?_____
A: 12B: 10C: 9D: 8
参考答案: A 本题解释: 【解析】五年前乙是(11-5)/3=2岁,所以今年是7岁,两年前是5岁。所以2年前甲是10岁,今年是12岁,选A。
42、一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译4小时,剩下的再由乙单独翻译,需要12小时才能完成。则这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15 B: 18 C: 20D: 25
参考答案: A 本题解释:【答案】A。解析:设总的工作量为1,则甲乙两人的工作效率和为,乙丙两人的工作效率和为。现在甲丙合作4小时,乙单独工作12小时的工作量,相当于甲乙合作4小时,乙丙合作4小时,乙再单独工作4小时的工作量。则乙工作4小时的工作量为1-×4-×4=,即乙每小时的工作量为,所以乙需要15小时完成工作。
43、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86来
参考答案: B 本题解释:B 【解析】设小明存入银行x元,则小红存入银行(x+20)元。由题意可得:(x-12)×3=(x+20)-12,故x=22。所以两人原来共存入银行22+(22+20)=64(元)。
44、某单位《普法知识问答》的总平均分为87分,男同志的平均分为85分,女同志的平均分为90分,问此单位的男、女比例是多少?_____
A: 2/3B: 3/4 C: 3/2 D: 4/3
参考答案: C 本题解释:C。设女同志为1,男同志为 ,则(85x+90)÷(1+x)=87,解得x=3/2,即为男、女的比例,选C。
45、有一批资料,甲机单独复印需11时,乙机单独复印需13时,当甲乙两台复印机同时复印时,由于相互干扰,每小时两台共少印28张,现在两台复印机同时复印了6小时15分钟才完成,那么这批资料共有多少张?_____
A: 2860B: 3146C: 3432D: 3575
参考答案: D 本题解释:【答案】D。解析:
46、心灵投射谬误也称为投射作用,它是一种非形式谬误,有两种形式,一种形式是某人认为他看世界的观点反映了世界的真相。也就是,某人将他的个人感觉投射到真实世界;另一种形式是某人认为自己不了解一个现象意味着这现象无法被理解或不是真的。根据上述定义,下列不属于心灵投射谬误的是_____。
A: 小李忍受不了闻臭豆腐的味道,就说臭豆腐这么臭,没人会喜欢吃B: 小敏是重庆人,到上海工作后,他发现上海菜普遍是甜的,于是他逢人就说上海菜很难吃C: 尽管知道葡萄架上的葡萄很甜,但是小刘因为摘不到,就对别人说葡萄很酸D: 课间,小荣给大家讲了一个冷笑话,小明理解不了为什么大家听后都捧腹大笑,就说小荣讲的笑话一点水平都没有
参考答案: C 本题解释:【答案】C。解析:心灵投射谬误有两种形式,一种是强调自己的主观意识,即认为自己的观点就是事情的真相。另一种认为自己不了解的就是无法理解的或不是真的。C项小刘的行为是自欺欺人的表现,他对别人说葡萄很酸,但自己并没有认为葡萄是酸的,因为他知道葡萄很甜,不符合“心灵投射谬误”的定义,故本题选C。
47、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86
参考答案: B 本题解释:【答案】B。解析:设小明原来存了Y元,则小红存了Y+20元,根据题意得(Y-12)×3=(Y+20-12),解得Y=22元。因此两人原来共存了2Y+20=64元,故正确答案为B。
48、一堆沙重480吨,用5辆载重相同的汽车运3次,完成了运输任务的25%,余下的沙由9辆同样的汽车来运,几次可以运完?_____
A: 4次B: 5次C: 6次D: 7次
参考答案: B 本题解释:【答案】B。解析:因为用5辆载重相同的汽车运3次,完成了运输任务的25%,所以每辆车一次可以运总工程量的(25÷5÷3)%=(5/3)%,所以9辆车一次可以运总工程量的9×(5/3)%=15%,余下的75%用9辆车运的话需要75÷15=5次,故正确答案为B。
49、小张从华兴园到软件公司上班要经过多条街道(软件公司在华兴园的东北方)。假如他只能向东或者向北行走,则他上班不同走法共有()。
A: 12种B: 15种C: 20种D: 10种
参考答案: D 本题解释:【答案】D。解析1:图中每个交叉点上的数字表示到达该点的方法数。只能向东或向北行走,则到达某点的方法数等于其西边一点和南边一点方法数的加和。因此到达软件公司有10种走法,正确答案为D。
解析2:只能向东或者向北行走,因此从华兴园到软件公司只需要向东走2个格,向北走3个格即可。可转化为朝着一个方向走的5步,每一步都有2种选择:向东或者向北,则到软件园的走法有5×2=10种。故正确答案为D。
50、某公司一季度有82%的人全勤,二季度有87%的人全勤,三季度有96%的人全勤,四季度有93%的人全勤。那么全年全勤的人最多占_____,最少占_____。
A: 82%,42%B: 82%,58%C: 87%,58%D: 87%,42%
参考答案: B 本题解释:B【解析】当一季度全勤的人在其他三个季度也是全勤时,全年全勤人数的比例最高,即占82%。一季度没有全勤的人数占18%,二季度没有全勤的人数占13%,三季度没有全勤的人数占4%,四季度没有全勤的人数占7%,因此全年至少有1-(18%+13%+4%+7%)=58%的人全勤,故本题答案为B。
51、1.31×12.5×0.15×16的值是_____。
A: 39.3B: 40.3C: 26.2D: 26.31
参考答案: A 本题解释:A【解析】本式可写为1.31×12.5×4×0.15×4。
52、某商场出售甲乙两种不同价格的笔记本电脑,其中甲电脑连续两次提价10%,乙电脑连续两次降价10%,最后两种电脑均以9801元售出各一台,与价格不升不降比较,则商场盈亏情况是_____。
A: 不亏不赚B: 少赚598元C: 多赚980.1元D: 多赚490.05元
参考答案: B 本题解释:【答案】B。解析:由题干可知价格调整之前,乙电脑价格高于甲电脑,则乙电脑两次降价10%降的部分要大于甲电脑两次提价10%的部分,因此调整后两台电脑的总价格小于调价前的价格,从而商场少赚了,故正确答案为B。
53、100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?_____
A: 43B: 44C: 45D: 46
参考答案: A 本题解释:【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
54、甲乙丙的速度之比为3:4:5,经过相同的一段路,三人所用时间之比:_____
A: 3:4:5 B: 5:4:3 C: 20:15:12 D: 12:8:5
参考答案: C 本题解释:C【解析】根据公式“时间=路程÷速度”可知,经过相同的路程,甲、乙、丙的时间比为1/3:1/4:1/5=20:15:12。
55、在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是_____秒。
A: 80B: 100C: 120D: 140
参考答案: D 本题解释:【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。
56、有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用_____
A: 19天B: 18天C: 17天D: 16天
参考答案: A 本题解释:【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。
57、张家和李家都使用90米的篱笆围成了长方形的菜园,已知李家的长方形菜园的长边比张家短5米,但是菜园面积却比张家大50平方米,则李家的长方形菜园面积为_____。
A: 550平方米B: 500平方米C: 450平方米D: 400平方米
参考答案: B 本题解释:【答案】B。解析:缺少的量为张家和李家菜园的具体长宽,可用方程法。设李家菜园长边为x米,则其短边长为45-x米;张家菜园长边为x+5米,其短边长为40-x,根据题意:x(45-x)-(x+5)×(40-x)=50,可解得x=25,李家菜园面积为x(45-x)=25×20=500。故本题答案为B选项。
58、用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,……,54321。其中,第206个数是_____
A: 313 B: 12345 C: 325 D: 371
参考答案: B 本题解释:B。由1、2、3、4、5组成的没有重复数字的一位数共有
;二位数共有个
;三位数共有个
;四位数共有个
;至此由1、2、3、4、5组成的没有重复数字的四位以内的数共有5+20+60+120=205个;那么第206个数是第一个由1、2、3、4、5组成的五位数,即最小的五位数12345。
59、一个四边形广场,它的四边长分别是60米,72米,84米,96米,现在在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?_____
A: 22B: 25C: 26D: 30
参考答案: C 本题解释:【解析】C。4个数字都相差12,可将树的间隔设为12米,可种树(60+72+84+96)/12=5+6+7+8=26,选C。
60、一项工程由甲单独做需要15天做完,乙单独做需要12天做完,二人合做4天后,剩下的工程由甲单独做,还需做几天方可做完?_____。
A: 6 B: 8C: 9 D: 5
参考答案: A 本题解释:A 【解析】依题意,甲每天完成总工程的1/15,乙每天完成总工程的1/12,甲、乙合作4天共完成(1/12+1/15) ×4=3/5,故剩下的工程甲需要的时间为(1—3/5)/(1/15)=6,总计算式即为[1一(1/12+1/15)]×4/(1/15)=6(天)。
61、某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:答案: A 解析:该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
62、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:答案:D 解析:根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
63、把若干个大小相同的水立方摆成如图形状!从上向下数,摆1层有1个立方体,摆2层共有4个立方体,摆3层共有10个立方体,问摆7层共有多少个立方体?
_____
A: 60B: 64C: 80D: 84
参考答案: D 本题解释:【答案】D。解析:根据规律得出数列:1+3+6+10+15+21+28=84。
64、“红星”啤酒开展“7个空瓶换l瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期问共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?_____
A: 296B: 298C: 300D: 302
参考答案: B 本题解释:由题可知,6个空瓶可以换一个瓶子里面的啤酒,298÷6=49……4,只有49+298=347。
65、甲以每小时6千米的速度步行从A地前往B地,在甲出发90分钟时,乙发现甲落下了重要物品,立即骑自行车以每小进12千米的速度追甲,终于在上午11点追上了甲。问甲出发时间是上午几点? _____
A: 7 B: 8 C: 9 D: 10
参考答案: B 本题解释:B。追及路程为6×1.5=9千米,甲乙速差为12-6=6千米/小时,则乙追上甲需要9÷6=1.5小时。因此甲出发时间是早上8点。故选B项。
66、三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是_____。
A: A等和B等共6幅B: B等和C等共7幅C: A等最多有5幅D: A等比C等少5幅
参考答案: D 本题解释:【答案】D。解析:解析1:分别以等级代表其数量,根据题意可得A+B+C=10……①;3A+2B+C=15……②②-①×2可得:C-A=5,因此正确答案为D。解析2:代入选项法。根据题意可得A+B+C=10……①;3A+2B+C=15……②此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。类似的方法可排除选项B、C。故正确答案为D。解析3:根据题意可得A+B+C=10……①;3A+2B+C=15……②由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。解析4:根据题意可得A+B+C=10……①;3A+2B+C=15……②对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。
67、A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路程等于乙火车5分钟走的路程。乙火车上午8时整从B站开往A站。开出一段时间后,甲火车从A站出发开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是15∶16。那么,甲火车在_____从A站出发开往B站。
A: 8时12分B: 8时15分C: 8时24分D: 8时30分
参考答案: B 本题解释:【答案】B。解析:由“甲火车4分钟所走的路程等于乙火车5分钟所走的路程”可知,甲、乙两火车速度之比为5∶4,取甲、乙速度分别为5、4。相遇时乙火车共行驶1小时,设甲火车共行驶x小时,则依题意有:=,解得x=,即甲火车共行驶了45分钟,所以甲在8时15分出发。
68、一个袋子里装有三种不同颜色但大小相同的小球。红色小球上标有数字1,黄色小球上标有数字2,蓝色小球上标有数字3。小明从袋中摸出10个小球,它们的数字和是21,那么小明摸出的小球中最多可能有多少个小球是红色的?_____
A: 3个B: 4个C: 5个D: 6个
参考答案: B 本题解释:【解析】设摸出的10个球中,红色小球有a个,黄色小球b个,那么蓝色小球有(10-a-b)个。根据题干可得:a+2b+3×(10-a-b)=21。整理得b=9-2a,显然a最大为4。这时b=1,则蓝色小球有10-1-4=5(个)。故本题正确答案为B。
69、某餐厅开展“每消费50元送饮料一瓶”的活动,某办公室的职员一起去该餐厅吃饭,每人花费18元,餐厅赠送了7瓶饮料。问去吃饭的人数可能是多少?_____
A: 17B: 19C: 21D: 23
参考答案: C 本题解释:C。送7瓶饮料说明总消费金额大于350小于400,代人选项发现只有21人时是21×18=378元符合条件。
70、有面积为1平方米、4平方米、9平方米、16平方米的正方形地毯各10块,现有面积为25平方米的正方形房间需用以上地毯来铺设,要求地毯互不重叠且而好铺满。问最少需几块地毯? _____
A: 6块B: 8块C: 10块D: 12块
参考答案: B 本题解释:最少需地毯块数,即尽量用大面积的地毯,25=16+9×1 ——10块25=9+3×4+4×1——8块25=4×4+9×1 ——13块,所以最小块数为8.具体是一块9平方米,三块4平方米。四块1平方米,选B。
71、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?_____
A: 900B: 180C: 270D: 500
参考答案: D 本题解释:【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18%,可知女警官有500人。
72、某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6 B: 8 C: 10 D: 12
参考答案: D 本题解释:D。列方程组。设学徒工、熟练工、技师分别有X,Y,Z名。则有:X+Y+Z=802X+6Y+7Z=4802X=6Y得到:X=15,Y=5,Z=60,所以Z∶Y=60∶5=12。选D。
73、甲、乙有数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个,如甲、乙二人一起按2元5个卖全部的萝卜,总收入会比预想的1个人少4元,两人共有多少萝卜?_____
A: 420B: 120C: 360D: 240
参考答案: D 本题解释:D。
74、用1个70毫升和1个30毫升的空容器盛取20毫升的水到水池A中,并盛取80毫升的酒精到水池B中,倒进或倒出某个容器都算一次操作,则最少需要经过几次作?_____
A: 15B: 16C: 17D: 18
参考答案: A 本题解释:答案:A【解析】设70毫升的容器为X,30毫升的容器为Y。1.倒满Y,30毫升;2.Y倒入X至Y空,X30毫升;3.倒满Y,30毫升;4.Y倒入X至Y空,X60毫升;5.倒满Y,30毫升;6.Y倒入X至X满,X70毫升,Y20毫升;7.Y倒入水池A中。8.倒满X,70毫升;9.X倒入Y至Y满,X40毫升,Y30毫升;10.Y全倒掉;11.X倒入Y至Y满,X10毫升,Y30毫升;12.Y全倒掉;13.X倒入水池B中至X空;14.X倒满,70毫升;15.X倒入水池B中至X空。15次即可完成,答案为A项。
75、1996+1997+1998+1999+2000+2001等于_____。
A: 11986B: 11991C: 12987D: 12989
参考答案: B 本题解释: B 【解析】原式=(2000-4)+(2000-3)+(2000-2)+(2000-1)+(2000+1)=2000×6-4-3-2+1=12000-9=11991。
76、一个三位自然数。把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。问这样的三位数有几个?_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B。
77、规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做1个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止。如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时? _____
A: 6.4B: 7.3C: 8.2D: 9.7
参考答案: B 本题解释:【答案】B。解析:把整个工程看做一个过程,甲乙轮流顺序不一样导致时间不一样,而前面8小时中,两次循环完成的工程是一样的,因此考虑8小时之后的两人的工作效率差。即甲工作2小时相当于乙工作1小时。第一次甲一共做了5小时,换做乙只用2.5小时,即总时间可以节省2.5小时,所以乙单独做只用9.8-2.5=7.3小时。
78、现有一个无限容积的空杯子,先加入1克酒精,再加入2克水,再加入3克酒精,再加入4克水,……,如此下去,问最终杯子中酒精溶液浓度为多少?_____ B: 25%C: 33.3%D: 50%
参考答案: D 本题解释:【解析】D。如果把加一次酒精和水看成一个流程,则经过n个流程后,杯子里面有1+3+5+…+(2n-1)=1/2n(1+2n-1)=n2克酒精,而酒精溶液有1+2+…+2n=1/2×2n(1+2n)=n(1+2n)克。故此时酒精溶液浓度为n2/n(1+2n)=n/(2n+1),当n趋于无穷大时,溶液浓度趋于1/2=50%。思路点拨:极端法,当加入酒精或水的量极大时连续两次操作水与酒精的差距对整体的影响可以忽略不计,因此必然各占50%。
79、某论坛邀请了六位嘉宾,安排其中三人进行单独演讲,另三人参加圆桌对话节目。如每位嘉宾都可以参加演讲或圆桌对话,演讲顺序分先后且圆桌对话必须安排在任意两场演讲之间,问一共有多少种不同的安排方式?_____
A: 120 B: 240 C: 480 D: 1440
参考答案: B 本题解释:【解析】B。排列组合。240;先从六个人中选三个参加演讲,这三个全排列,再插孔法放入两个对话节目。
80、某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?_____
A: 12 B: 16 C: 24 D: 以上都不对
参考答案: C 本题解释:【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
81、某技校安排本届所有毕业生分别去甲、乙、丙3个不同的工厂实习。去甲厂实习的毕业生占毕业生总数的32%,去乙厂实习的毕业生比甲厂少6人,且占毕业生总数的24%.问去丙厂实习的人数比去甲厂实习的人数_____。
A: 少9人B: 多9人C: 少6人D: 多6人
参考答案: B 本题解释:【答案】B。解析:根据题意去甲厂实习的人数占32%,去乙厂实习的人数占24%,因此去丙厂实习的人数占1-32%-24%=44%,故去丙厂的人数比去甲厂多44%-32%=12%;而去甲厂实习的人数比去乙厂的多32%-24%=8%,为6人,故去丙厂的人数比去甲厂的应多6÷8%×12%=9人,故答案选B。
82、将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有多少种不同的方法?_____
A: 8B: 10C: 15D: 20
参考答案: B 本题解释:B。【解析】四盆黄花两侧可形成5个空隙,要使三盆红花互不相邻只需从中选取3个空隙放入红花即可,=10。
83、在同一环形跑道上小陈比小王跑得慢,两人都按同一方向跑步锻炼时,每隔12分钟相遇一次;若两人速度不变,其中一人按相反方向跑步,则隔4分钟相遇一次。问两人跑完一圈花费的时间小陈比小王多几分钟?_____
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:不妨设小王和小陈速度分别为x,y,跑道长度为s,则:两人都按同一方向跑步锻炼时,每隔12分钟相遇一次,说明s/(x—y)=12;若两人速度不变,其中一人按相反方向跑步,则每隔4分钟相遇一次,说明s/(x+y)=4;解得s=6x=12y,所以两人跑完一圈花费的时间小陈比小王多6分钟。
84、在一条公路旁有4个工厂,每个工厂的人数如图所示,且每两厂之间距离相等。现在要在公路旁设一个车站,使4个工厂的所有人员步行到车站总路程最少,这个车站应设在几号工厂门口?_____
A: 1号B: 2号C: 3号D: 4号
参考答案: C 本题解释:C【解析】 一般情况车站设在几个工厂的中间,即设在2号工厂或3号工厂门口。由于各厂人数不同,还是应通过计算再决定车站在哪一个工厂门口合适。如果设车站建在2号工厂门口,且设每两个工厂之间距离为1千米,那么4个工厂所有人员步行总路程为:1×100+1×80+2×215=100+80+430=610(千米)如果车站设在3号工厂门口,每两个工厂之间的距离为1千米,那么4个工厂所有人员步行总路程为:1×100×2+1×120+1×215=200+120+215=535(千米)显然,车站设在3号厂门口,才能使4个工厂所有人员步行到车站总路程最少。故本题选C。
85、一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是个偶数。请你帮助小明计算一下,他答错了多少道题_____
A: 3B: 4C: 5D: 6
参考答案: A 本题解释:【答案】A,代入即可,答对13道题,得26分,打错3道扣3分,未答的题的数目是4道恰好是个偶数。
86、某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?_____
A: 1200 双 B: 1300 双 C: 1400 双 D: 1500 双
参考答案: D 本题解释:【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
87、12个啤酒空瓶可以免费换1瓶啤酒,现有101个啤酒空瓶,最多可以免费喝到的啤酒为_____。
A: 8瓶B: 9瓶C: 10瓶D: 11瓶
参考答案: B 本题解释:B。12空瓶=1空瓶+瓶中酒,因此11空瓶=瓶中酒。101个空瓶最多喝到[101÷111=9瓶啤酒([]为取整号)。
88、甲、乙两艘游轮同时从秦皇岛和天津出发,甲轮从天津出发,开出2天后在海上与乙轮相遇,一天后到达秦皇岛,而乙轮则于相遇后4天到达天津,假设甲、乙两轮的时速保持不变,甲轮的速度是乙轮的几倍?_____
A: 1倍B: 2倍C: 3倍D: 2.5倍
参考答案: B 本题解释:B【解析】甲走完全程用3天,乙走完全程用6天,故甲速度是乙的2倍。
89、有5位田径运动员争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的情况可能有_____。
A: 124种B: 125种C: 130种D: 243种
参考答案: B 本题解释: B [解析] 每项比赛的冠军都有5种可能性,所以获得冠军的情况有C15×C15×C15=125(种)。故本题选B。
90、27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?_____
A: 21 B: 23C: 25D: 27
参考答案: A 本题解释:A。【解析】代入法,购买21瓶可换回7瓶,显然满足。但本题有问题,如果计算本题,购买19平饮料即可。19瓶饮料可以换6瓶新的饮料,这六瓶又可以换得2瓶,一共得到19+6+2+1=28瓶。如果一定要说21时正确答案的话,那只能从口渴难耐四个字找原因了。只换一次,最少要购买21瓶。
91、在平面直角坐标系中,如果点P(3a-9,1-a)在第三象限内,且横坐标、纵坐标都是整数,则点P的坐标是_____。
A: (一1.一3)B: (一3,一1)C: (一3,2)D: (一2,一3)
参考答案: B 本题解释:B【解析】第三象限内的值都是负值,因此可得
。且P点横纵坐标都是整数,因此2,所以P点坐标是(一3,一1)。
92、现有红、黄、蓝三种颜色的珠子各若干颗,分给某班的52个学生,每个学生可以取1至3颗珠子,一种颜色的珠子最多只能取1颗。那么,这班学生中至少有_____人取的珠子完全相同。
A: 5B: 8C: 13D: 17
参考答案: B 本题解释:B[解析]取珠子的种类有如下7种:①红;②黄;③蓝;④红与黄;⑤红与蓝;⑥黄与蓝;⑦红、黄、蓝。从最不巧的情况想。每七个学生取的珠子的种类各不相同,因为52÷7(余3),所以,至少有7+1(即8)个人取的珠子完全相同。故本题正确答案为B。
93、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
94、某公交线路有15站,假设一辆公交车从起点站出发,从起点站后,每一站都会有到前方每一站下车的乘客各一名上车,那么在第九站和第十站之间,车上有_____人?
A: 48B: 54C: 56D: 60
参考答案: B 本题解释:【答案】B。解析:解析1:总站点数为M,求第N站和第N+1之间车上的人数,有下述公式,车上的人数=N×(M-N),可知所求人数为9×(15-9)=9×6=54,故选B。解析2:第一站点有14个人上车,没有人下车,第二个站点有13个人上,1个人下车,所以到第九站时候,前面上车人数为14,13,12,11,10,9,8,7,6,根据等差数列求和公式,一共有(14+6)×9÷2=90人,下车的人数为1,2,3,4,5,6,7,8,一共有(1+8)×8÷2=36,则到第九站点后,车上人数等于一到第九站上车的人减去一到第九站下车的人数,即90-36=54,故选B选项。此题不用考虑过于复杂,起始站为第一站。
95、小明和小强从400米环形跑道的同一点出发,背向而行。当他们第一次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向。小明每秒跑3米,小强每秒跑5米,则在两人第30次相遇时,小明共跑了多少米?
A: 11250B: 13550C: 10050D: 12220
参考答案: A 本题解释:【答案】A。
96、一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×138=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。
97、某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有_____人。
A: 57B: 73C: 130D: 69
参考答案: A 本题解释:【解析】68+62+12-85=57人。
98、小王工作一年酬金是1800元和一台全自动洗衣机。他干了7个月,得到560元和一台洗衣机,问这台洗衣机价钱为多少元_____
A: 1176B: 1144C: 1200D: 1154
参考答案: A 本题解释:A[解析]小王工作5个月的酬金为1800—560=1240元,因此他工作一年的酬金相当于1240÷5×12=2976元,故洗衣机相当于2976-1800=1176元。
99、建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人B: 30人C: 40人D: 50人
参考答案: B 本题解释:【答案】B。解析:采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。
100、六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分_____。
A: 93B: 94C: 95D: 96
参考答案: C 本题解释:C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。