微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、(2007浙江A类)某部队战士排成了一个6行、8列的长方阵。现在要求各行从左至右
报数,再各列从前到后
报数。问在两次报数中,所报数字不同的战士有:_____
A: 18个B: 24个C: 32个D: 36个
参考答案: C 本题解释:参考答案:C题目详解:根据题意可列表如下:
表格中用★标记的即为每次报数相同的战士,根据表格:第三行和第六行报“3”的战士有:16名,其余四行每一行中有战士报的数字不相同的有:4名;因此总共有
名战士所报数字不同;所以,选C。考查点:数量关系>数学运算>特殊情境问题>方阵问题>实心方阵问题
2、商店卖气枪子弹,每粒1分钱,每粒4分钱,每10粒7分钱,每20粒1角2分钱。小明的钱至多能买73粒,小刚的钱至多能买87粒.小明和小刚的钱合起来能买多少粒? _____
A: 160B: 165C: 170D: 175
参考答案: B 本题解释: 【答案】B。解析:小明子弹73颗,可知买了3个20粒,1个10粒,3个1粒,共有46分钱;同理小刚买了4个20粒,1个5粒,2个l粒,共有54分钱。两人共有100分钱,可以买8个20粒,1个5粒,共卖165粒。
3、某考试均为判断题,共10题,每题10分,满分为100分。考生答题时认为正确则画为“0”。认为不正确则画“×”。以下是考生的答题情况及甲、乙、丙的实际得分,则丁的得分为_____。题号12345678910得分甲××0×0××0××0乙×000×0×0000丙×000×××0×00丁××000××0000
A: 20分B: 40分C: 60分D: 80分
参考答案: C 本题解释:【答案】C。解析:首先观察甲和丙,得分相差40分,而他们的答案不一样的出恰好有4题,那么也就是说,丙和甲不一样的题(即2,4,5,10)甲都做对了,而这四道题恰好乙也全做错了,而乙一共做错了5道题,也就是说剩下的题目(1,3,7,8,6,9)中,乙只错了一个;又四人判断一致的题目,(即1,3,7,8)中必有一个四个人全做错了,因为丙一共只做对了3道题,那么,也就是说6、9、题乙做对了,那么现在答案除了1、3、7、8都确定了,即(2,4,5,10)与甲一致,(6,9)与乙一致,在这6道题中丁做对了3道,剩下的(1,3,7,8)丁做对3道。综上所述,丁得分60分。
4、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?_____
A: 31:9B: 7:2C: 31:40D: 20:11
参考答案: A 本题解释:【答案解析】(3/4+4/5)/(1/4+1/5)=31:9
5、某品牌啤酒可以用3个空瓶再换回1瓶啤酒,某人买回10瓶啤酒,则他最多可以喝到_____瓶啤酒。
A: 13B: 15C: 16D: 17
参考答案: B 本题解释:参考答案:B题目详解:9瓶可以换到3瓶啤酒回来,这时候剩下买10瓶当中的1个空瓶,以及喝完3瓶啤酒的空瓶,总共4个空瓶,再用3个空瓶换1瓶,剩下两个空瓶,向卖家借1瓶啤酒喝完还给他3个空瓶,因此总共是:
;简便法:3瓶换1瓶实际上是只需要2个瓶子,因此买10瓶能够换到
5瓶,
考查点:数量关系>数学运算>统筹问题>空瓶换酒问题
6、(2008广东,第13题)60个人上身着白上衣或黑上衣,下身着蓝裤子或黑裤子。其中有12个人穿白上衣蓝裤子,有34个人穿黑裤子,有29个人穿黑上衣,求身着黑裤子黑上衣多少人?_____
A: 13B: 14C: 15D: 20
参考答案: C 本题解释:参考答案:C题目详解:解法一:根据题意,设穿黑裤子黑上衣的人数有x人。根据公式“黑裤子数+黑上衣数-黑裤子黑上衣数=总数-白衣服蓝裤子数”可得:
,解得
。所以,选C。解法二:根据题意,设上衣分别为1、2,裤子分别为3、4。总共4种穿衣的情况:
;
;又因为:
,
,
,
;所以,可得:
所以,选C。解法三:根据题意,可知:60名运动员中有34人穿黑裤子,则剩下的60-34=26人穿蓝色裤子。而穿蓝色裤子的26人中有12人穿白上衣,那么剩下的26-12=14人穿黑上衣且蓝裤子又穿黑上衣的29人中有14人穿蓝裤子,那么剩下的人穿黑裤子且黑上衣,有29-14=15人。如图所示:
所以,选C。考查点:数量关系>数学运算>容斥原理问题>两个集合容斥关系
7、某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费。每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?_____
A: 43,51B: 51,43C: 51,45D: 45,51
参考答案: C 本题解释:参考答案:C题目详解:观察题目,显然3元3角不能整除5角,所以甲一定超出了50度,而超出部分并不能整除8角,所以乙肯定没有超过50度。设甲比50度多
度,乙比50度少
度,可列方程为:
,可知
不可能大于4,故有
。故甲用了51度,乙用了45度。所以,选C。考查点:数量关系>数学运算>特殊情境问题>分段计算问题
8、整数64具有可被它的个位数字所整除的性质。试问在10和50之间有_____个整数具有这种性质。_____
A: 15B: 16C: 17D: 18
参考答案: C 本题解释:正确答案是C考点倍数约数问题解析个位是1、2、5的数字都可以被1、2、5整除,有4×3=12个;个位是3的数字十位必须是3的倍数才能被3整除,只有33这1个数字;个位是4的数字十位必须是偶数才能被4整除,有2个;个位是6的数字十位也必须是3的倍数,有1个;个位是7的数字十位必须能够被7整除,有0个;个位是8的数字十位必须是4的倍数,有1个。个位是9的十位必须是9的倍数,有0个。因此总共有12+1+2+1+0+1+0=17个。故正确答案为C。
9、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?_____
A: 1千米 B: 1.2千米C: 1.5千米D: 1.8千米
参考答案: A 本题解释:【答案】A。解析:直线多次相遇问题。第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5千米。从图上可看出,第二次相遇处离乙村2千米,因此,甲、乙两村距离是10.5-2=8.5千米。每次相遇甲乙二人路程和都比上次相遇多2倍的两地间距。第四次相遇时,两人已共同走了(3+2+2)倍的两村距离,其中张走了3.5×(2×4-1)=24.5千米,24.5=8.5+8.5+7.5千米。因此第四次相遇处,离乙村8.5-7.5=1千米。
10、A、B两桶中共装有108公斤水。从A桶中取出1/4的水倒入B桶,再从B桶中取出1/4的水倒入A桶,此时两桶中水的重量刚好相等。问B桶中原来有多少公斤水?_____
A: 42B: 48C: 50D: 60
参考答案: D 本题解释:【解析】D。代入排除思想。由题意,最后两桶水中各有54公斤水。代入D项60。则A桶原有水量为48公斤,48×1/4=12,12+60=72,72×1/4=18,72-18=54,满足题意。
11、19991998的末位数字是:_____
A: 1 B: 3 C: 7 D: 9
参考答案: A 本题解释:【解析】此题关键是要考察末位数的变化情况,9的一次幂、二次幂、三次幂、四次幂……的尾数呈9、1、9、1……变化,即其奇数次幂时尾数是9,偶数次幂时尾数是1,所以,选A
12、某公司100名员工对甲、乙两名经理进行满意度评议,对甲满意的人数占全体参加评议的3/5,对乙满意的人数比甲的人数多6人,对甲乙都不满意的占满意人数的1/3多2人,则对甲乙都满意的人数是_____。
A: 36B: 26C: 48D: 42
参考答案: D 本题解释:正确答案是D考点容斥原理问题解析对甲满意的人数为60人,对乙满意的人数为66人,设对甲、乙都满意的人数为X,则对甲、乙都不满意的人数为1/3X+2,由两集合容斥原理的推论公式可知,100-(1/3X+2)=60+66-X,解得X=42,故正确答案为D。两集合容斥原理推论公式:满足条件1的个数+满足条件2的个数-都满足的个数=总数-都不满足的个数。
13、某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?_____
A: 5 B: 4 C: 3 D: 2
参考答案: D 本题解释:D。【解析】被N除余数是N-1,所以这个数字就是几个N的公倍数-1。10,9,8的公倍数为360n(n为自然数),因为100<S<1000,所以有两个数符合条件。
14、有水果糖、奶糖、巧克力三袋重量不同的糖果,水果糖与奶糖的重量比是6:5,若水果糖的2/3被吃掉,且被吃掉的水果糖与被吃掉的巧克力的重量之比是5:4,那么这两种糖剩下的部分重量相等。问原先水果糖、奶糖、巧克力的重量之比是多少?_____
A: 35:30:31B: 25:20:21C: 30:25:26D: 42:35:40
参考答案: C 本题解释:C。
15、一个三位数的各位数字之和是16。其中十位数字比个位数字小3。如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大495,则原来的三位数是多少?_____
A: 169B: 358C: 469D: 736
参考答案: B 本题解释:正确答案是B考点多位数问题解析将各项直接代入,只有B项符合,可直接得出B项正确。标签直接代入
16、某产品售价为67.1,在采用新技术生产节约10%成本之后,售价不变,利润可可比原来翻一番。则该产品最初的成本为_____元。
A: 51.2B: 54.9C: 61D: 62.5
参考答案: C 本题解释:正确答案是C考点经济利润问题解析由题意可知,节约的10%成本与原利润相等,设成本为n,则有67.1-n=0.1n,解得n=61。故正确答案为C。
17、目前日期的流行记法是采用6位数字,即将公元年份的后两位数字记在最左边,中间两个数字表示月份,最末两位数字表示日份(例如1978年2月24日记为780224)。2010年1月22日应记为100122,这个六位数恰好能被66整除,因此这样的日期被称为“大顺日”,请问距2010年1月22日最近的一个大顺日是2010年的几月几日?_____
A: 2月21日B: 3月8日C: 3月20日D: 5月18日
参考答案: C 本题解释:参考答案:C本题得分:题目详解:根据题意:66=2×3×11,则依次考虑这个大顺日要分别能被2、3、11整除。能被2整除的数:末位数为0、2、4、6、8,排除A项;能被3整除的数:各位数字之和能被3(或9)整除,剩下三项都符合题意;能被11整除的数:奇数位数字之和与偶数位数字之和的差能被11整除;排除B;D项也能被66整除,但是不是距2010年1月22日最近的大顺日,因此只有C项符合题意,所以选C。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除特征
18、(2008内蒙古,第10题)31个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶子可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?_____
A: 2lB: 23C: 25D: 27
参考答案: A 本题解释:参考答案:A题目详解:3瓶=1瓶饮料→3瓶=1瓶+1饮料→2瓶=l饮料→N瓶=
饮料→N瓶饮料=N瓶+N饮料=
饮料+N饮料=
饮料。可知
,解得
。考查点:数量关系>数学运算>统筹问题>空瓶换酒问题
19、共计33个三角形和四边形,有111个角,则四边形的个数为_____。
A: 10B: 11C: 12D: 13
参考答案: C 本题解释: C [解析] 设四边形的个数为x,由题意可得:4x+(33-x)×3=111,解得x=12,即应该有12个四边形。故本题选C。
20、_____
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点计算问题解析
21、用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,……,54321。其中,第206个数是_____
A: 313 B: 12345 C: 325 D: 371
参考答案: B 本题解释:B。由1、2、3、4、5组成的没有重复数字的一位数共有
;二位数共有个
;三位数共有个
;四位数共有个
;至此由1、2、3、4、5组成的没有重复数字的四位以内的数共有5+20+60+120=205个;那么第206个数是第一个由1、2、3、4、5组成的五位数,即最小的五位数12345。
22、甲班有42名学生,乙班有48名学生。已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分,那么甲班的平均成绩比乙班高多少分?_____
A: 10B: 11C: 12D: 13
参考答案: C 本题解释:正确答案是C考点平均数问题解析解析1:设乙班学生的平均成绩为x分,甲班比乙班平均成绩高y分,则可得方程:42(x+y)=48x,x=7y。将选项分别代入等式,x分别等于70,77,84,91。根据已知条件各班平均成绩都高于80分,可排A、B项。将C、D项代入已知条件算出甲班的平均成绩分别为96、104,因为考试按百分制评卷,排除D。故本题正确答案为C。解析2:由题干总成绩相同,可知总成绩是42和48的公倍数。两个数的最小公倍数为336,所以总成绩是336的倍数,记作336n(n为整数),则平均分差异为336n÷42-336n÷48=n。又试卷为百分制,且平均分都高于80分,那么48×80<336n<42×100,故80/7标签直接代入数字特性
23、如图所示,A的面积为36平方米,B的面积为24平方米,A、B之间的落差为5米,现在要将A地的土移到B地,使A、B同样高,B地应升高_____米。
A: 2B: 2.4C: 2.5D: 3
参考答案: D 本题解释:D【解析】图所示,将B面视为水平面,A面所在六面体的体积为36×5=180(立方米),将这180立方米的土平均分布在(A+B)的面上,所得到的高就是B面上升的高度,即180÷(36+24)=3(米),故本题答案为D。
24、某单位选举工会主席,每人投票从甲、乙、丙三个候选人中选择一人。已知该单位共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为工会主席,那么甲最少再得到多少票就能够保证当选?_____
A: 2B: 3C: 4D: 5
参考答案: C 本题解释:正确答案是C考点抽屉原理问题解析剩余的票数为:52-17-16-11=8,假设甲得4票,乙得4票,那甲仅以一票的优势当选,此时再少一票甲就不能保证当选,因此甲最少再得4张票就能保证当选,故正确答案为C。标签构造调整
25、一个自然数”x”,除以3的余数是2,除以4的余数是3,问”x”除以12的余数是_____。
A: 1B: 5C: 9D: 11
参考答案: D 本题解释:正确答案是D考点计算问题解析直接代入选项,很明显只有D符合,故正确答案为D。标签直接代入
26、两辆汽车同时从某地出发到同一目的地,路程180千米。甲车比乙车早到0.8小时。当甲车到达目的地时,乙车离目的地32千米。甲车行驶全程用了_____小时。
A: 3.5B: 3.7C: 4D: 4.5
参考答案: B 本题解释:【解析】乙车的速度为32÷0.8=40千米/小时,则乙车行驶全程用了180÷40=4.5/小时,故甲行驶全程用了4.5-0.8=3.7小时。
27、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? _____
A: 10 B: 8 C: 6 D: 4
参考答案: B 本题解释:B。【解析】令间隔t,汽车速度b,自行车速度3a,人速a,这道题关键是相对速度乘以相对时间等于路程差。车路程差为b×t,与行人相同方向行驶的汽车的相对速度为b-a,行驶b×t的相对时间为10=>b×t=10×(b-a) 同理,可得b×t=20×(3a-b),通过车路程差为b×t求出a/b=1/5,带入原式t=8。
28、某年级有4个班,不算甲班其余三个班的总人数有131人,不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人? _____
A: 177B: 176C: 266D: 265
参考答案: A 本题解释:A。【解析】有①乙+丙+丁=131,②甲+乙+丙=134,③乙+丙+1=甲+丁,①-③得丁-1=131-甲-丁,甲=132-2丁,①-②得,甲=丁+3,丁=43,总人数为134+43=177人
29、某单位依据笔试成绩招录员工,应聘者中只有四分之一被录取,被录取的应聘者平均分比录取分数线高6分,没有被录取的应聘者平均分比录取分数线低10分,所有应聘者的平均分是73分,问录取分数线是多少分?_____
A: 80B: 79C: 78D: 77
参考答案: B 本题解释:【答案】B。
30、共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有_____个。
A: 2B: 3C: 5D: 7
参考答案: A 本题解释:【答案】A。解析:设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。
31、3×999+8×99+4×9+8+7的值是:_____
A: 3840B: 3855C: 3866D: 3877
参考答案: A 本题解释: 【答案】A。解析:四个选项尾数各不相同,可考虑结果的尾数。7+2+6+8+7=30,所以尾数为0,故选A。
32、某市夏季高峰期对居民用电采用如下办法收取电费:用户月用电量在50度以内的部分,按0.4元/度收费;超过50度的部分,按0.8元/度收费。该市一户居民去年夏季高峰期有一个月的电费为32元,那么这个月该用户用电度数是_____。
A: 50度B: 55度C: 60度D: 65度
参考答案: D
33、某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?_____
A: 329B: 350C: 371D: 504
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。秒杀技由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。标签数字特性
34、一个四位数”□□□□”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数”□□□□”中四个数字的和是_____。
A: 17B: 16C: 15D: 14
参考答案: C 本题解释:正确答案是C考点计算问题解析列方程可解得,设4位数为X,有X/15+X/12+X/10=1365,解得X=5460,4数字和为15。故正确答案为C。秒杀技由题意可知,该四位数能被3整除,则其所有数字之和能被3整除,仅C符合。标签数字特性
35、(2006年北京社会第24题)一艘轮船在离港口20海里处船底破损,每分钟进水1.4吨,这艘轮船进水70吨后就会沉没。问:这艘轮船要在沉没前返回港口,它的时速至少要达到多少海里?_____
A: 0.4海里B: 20海里C: 24海里D: 35海里
参考答案: C 本题解释:参考答案: C题目详解:轮船行驶的时间需小于:
分钟,
;则船的速度至少为:
。所以,选C。考查点:数量关系>数学运算>行程问题>行船问题>基本行船问题
36、某人做一道整数减法题时,把减数个位上的3看成了8,把减数十位上的8看成了3,得到的差是122,那么正确的得数应该是_____。
A: 77B: 88C: 90D: 100
参考答案: A 本题解释:参考答案:A题目详解:先求原来的减数:假设原来的减数是83,被误当做38,再求被减数:被减数应为122+38=160,则正确的得数为160-83=77。所以,选A.考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的排列与位数关系
37、从0、1、2、4、7五个数中选出三个组成三位数,其中能被3整除的最大数和能被5整除的最小数之差为:_____
A: 618B: 621C: 649D: 729
参考答案: B 本题解释:参考答案:B题目详解:能被3整除的数,且是最大数:满足百位和十位的数字尽可能的大,且与个位数字之和为3的倍数;因此,组成的能被3整除的最大整数为741。能被5整除的数,且是最小数:满足百位和十位的数字尽可能的小,且末位数字是0或5;因此,组成的能被5整除的最小数为120。根据题意,求得最大数与最小数的差:741-120=621;因此,选B。考查点:数量关系 > 数学运算 > 计算问题之数的性质 > 整除问题 > 整除特征
38、16支球队分两组,每组打单循环赛,共需打_____场比赛。
A: 16B: 56C: 64D: 120
参考答案: B 本题解释:参考答案:B题目详解:依题意:16支球队分两组,每组8支队;每个队都要跟其余7个球队赛一场:因此,每组需要打8×7÷2=28场比赛,两组一共是28×2=56场比赛。所以,选B。考查点:数量关系>数学运算>排列组合问题>比赛问题>循环赛
39、某市一条大街长7200米,从起点到终点共设有9个车站,那么每个车站之间的平均距离是_____。
A: 780米B: 800米C: 850米D: 900米
参考答案: D 本题解释:正确答案是D考点计数模型问题解析该问题为计数模型中的植树问题。车站间的平均距离为7200÷(9-1)=900。故正确答案为D。
40、甲、乙双方第一次用30元/千克的价格购买一批材料,到第二次再购买时,价格涨到了40元/千克。已知甲每次购买10000千克,乙每次用10000元购买。则甲、乙双方这两次交易的平均价格差约为_____元/千克。
A: 0.5B: 0.7C: 1.5D: 1.8
参考答案: B 本题解释:参考答案:B题目详解:甲方两次交易的平均价格为:(30+40)÷2=35元/千克,乙方两次交易的平均价格为:
元/千克,平均价格差为:
元/千克。所以,选B。考查点:数量关系>数学运算>利润利率问题>成本、售价、利润、利润率之间的等量关系问题
41、某公共汽车从起点站开往终点站,途中共有13个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好在以后的每一站有一位乘客下车。为了使每位乘客都有座位,那么,这辆公共汽车至少应有多少个座位?_____
A: 48B: 52C: 56D: 54
参考答案: C 本题解释:正确答案是C考点数列问题解析根据题目可知起点站上14人,第一停车站上13人,下1人;第二车站上12人,下2人;第三停车站上11人,下3人;……;第十三停车站上1人,下13人。分析可知,上车人数随站递减,下车人数随站递增,所以当下车人数等于上车人数时,车上人数最多,第七停车站上7人下7人,所以此时人数达到最多,以后递减,此时人数为14+(13-1)+(12-2)+(11-3)+(10-4)+(9-5)+(8-6)=56,因此这辆公共汽车至少应有56个座位,故正确答案为C。
42、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门口,请问第58面旗是什么颜色_____
A: 黄B: 红C: 绿D: 紫
参考答案: A 本题解释:正确答案是A考点周期问题解析通过题干可知,彩旗插放顺序是以4为周期,58÷4=14余2,则第57面旗为红色,第58面旗为黄色。故正确答案为A。标签整体考虑
43、甲、乙两港相距720千米,轮船往返两港需要35小时,逆流航行比顺流航行多花5个小时;帆船在静水中每小时行驶24千米,问帆船往返两港需要多少小时?_____
A: 58B: 60C: 64D: 66
参考答案: C 本题解释:C。分析可知轮船逆流航行了20小时,顺流航行了15小时。可得水流速度是(720÷15—720÷20)÷2=6千米/小时,所以帆船顺水速度是24+6=30千米/小时,逆水速度是24—6=18千米/小时,往返需要720÷30+720÷18=64小时。
44、有一队学生,排成一个中空方阵,最外层的人数共48人,最内层人数为24人,则该方阵共有_____人。
A: 120B: 144C: 176D: 194
参考答案: B 本题解释:参考答案:B题目详解:设最外层每边
人,最内层每边
人;根据方阵公式:
因此外层每边13人,内部空心部分每边
人;方阵总共有:
;所以,选B考查点:数量关系>数学运算>特殊情境问题>方阵问题>空心方阵问题
45、甲以每小时6千米的速度步行从A地前往B地,在甲出发90分钟时,乙发现甲落下了重要物品,立即骑自行车以每小进12千米的速度追甲,终于在上午11点追上了甲。问甲出发时间是上午几点? _____
A: 7 B: 8 C: 9 D: 10
参考答案: B 本题解释:B。追及路程为6×1.5=9千米,甲乙速差为12-6=6千米/小时,则乙追上甲需要9÷6=1.5小时。因此甲出发时间是早上8点。故选B项。
46、某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?_____
A: 24B: 25C: 26D: 27
参考答案: B 本题解释:正确答案是B考点多位数问题解析要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。标签构造调整
47、一容器内有浓度为30%的糖水,若再加入30千克水与6千克糖,则糖水的浓度变为25%。问原来糖水中含糖多少千克?_____
A: 5:6B: 1:1C: 6:5D: 4:3
参考答案: B 本题解释:正确答案是B考点行程问题解析解析1:根据题意,甲乙两人用时分别为1.5小时、1小时,时间比为3:2,速度比为2:3,因此路程比为1:1,故正确答案为B。解析2:甲的速度是乙的2/3,设甲、乙的速度分别为2、3,则甲走过的路程为2×(1+0.5)=3,乙为3×1=3,因此路程比为1:1。故正确答案为B。标签赋值思想比例转化
48、在一个大笼子里关了一些鸡和一些兔子。数它们的头,一共有36个;数它们的腿一共有100条。问鸡和兔各多少只_____
A: 鸡21只,兔13只B: 鸡23只,兔16只C: 鸡22只,兔14只D: 鸡23只,兔15只
参考答案: C 本题解释:参考答案:C题目详解:假设36只全是鸡,就应有
条腿,这就比题目所说的“100条腿”少了28条腿。为什么“腿”会少呢?很显然,是我们把四条腿的兔子当成了两条腿的鸡。由此即可求出兔子的只数,列式为:
(只);鸡的只数为:
(只)。因此,选C。考查点:数量关系>数学运算>特殊情境问题>鸡兔同笼问题>基本鸡兔同笼问题
49、甲、乙、丙、丁四人,其中每三个人的岁数之和分别是55、58、62、65。这四个人中年龄最小的是_____
A: 7岁B: 10岁C: 15岁D: 18岁
参考答案: C 本题解释:参考答案:C题目详解:根据题意:设四个人的岁数分别为a、b、c、d;则得每三个人的岁数之和分别为a+b+c,a+b+d,a+c+d,b+c+d;这四个数之和为3(a+b+c+d)。四人的年龄和为:a+b+c+d=(55+58+62+65)÷3=80;而年龄大的三个人的年龄之和一定是最大的,由题目可知:四个数中65最大,即年龄大的三个人年龄之和为65;则最后剩下的人的年龄一定是最小的;所以年龄最小的为80-65=15岁;所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值
50、某股民今年一月买入片仔癀股票1000股,每股31元;工商银行股票10000股,每股5.3元。二月将以上两只股票全部卖出,卖出时片仔癀股票股价比买入时上涨了10%,工商银行股票股价比买入下跌了0.2元,则该股民操作这两只股票的业绩情况是_____。
A: 盈利3100元B: 亏损2000元C: 亏损1100元D: 盈利1100元
参考答案: D 本题解释:正确答案是D解析由题意可得,31×1000×10%-0.2×10000=1100>0,即盈利1100元,故正确答案为D。考点经济利润问题
51、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的
,相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离。_____
A: 4500米B: 6500米C: 7500米D: 8650米
参考答案: C 本题解释:参考答案:C题目详解:解法一:设甲的速度为x,则乙的速度为
,第一次相遇的时间为t,从第一次相遇到第二次相遇的时间为y,两地距离为s。由题意可得:
由以上公式解得:s=7500解法二:甲乙速度比是:1:
=3:2第一次相遇的时候:甲行全程
,乙行全程的
;第二次相遇是三个全程,甲行了:
;那么此时甲距离A地:
;那么全程AB:
米。解法三:两个人第二次相遇时共走了3个的全程,将全程设为5份。第一次相遇时候乙走了2份,于是知道第二次相遇地点距离第一次相遇地点最短的路程是
份。依题意这2份路程的长度是3000米,那么A、B两地相距
米。所以,选C考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线多次相遇问题
52、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米的价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格可下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过_____。
A: 800吨B: 1080吨C: 1360吨D: 1640吨
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析所求量为投放储备玉米的最大数量,对应正常市场价格的最低价。此时价格差为2.68-1.86=0.82元,而每100吨可降0.05元,因此数量不能超过0.82÷0.05×100=1640吨。故正确答案为D。
53、某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)_____
A: 25B: 30C: 35D: 40
参考答案: B 本题解释:正确答案是B考点牛吃草问题解析设河沙初始量为M,每月沉积量为N。则有:M=(80-N)×6=(60-N)×10,解得N=30,即每个月的沉积量可供30人开采;可知当开采人数为30时,才能保证连续不间断的开采,故正确答案为B。
54、用1个70毫升和1个30毫升的空容器盛取20毫升的水到水池A中,并盛取80毫升的酒精到水池B中,倒进或倒出某个容器都算一次操作,则最少需要经过几次作?_____
A: 15B: 16C: 17D: 18
参考答案: A 本题解释:答案:A【解析】设70毫升的容器为X,30毫升的容器为Y。1.倒满Y,30毫升;2.Y倒入X至Y空,X30毫升;3.倒满Y,30毫升;4.Y倒入X至Y空,X60毫升;5.倒满Y,30毫升;6.Y倒入X至X满,X70毫升,Y20毫升;7.Y倒入水池A中。8.倒满X,70毫升;9.X倒入Y至Y满,X40毫升,Y30毫升;10.Y全倒掉;11.X倒入Y至Y满,X10毫升,Y30毫升;12.Y全倒掉;13.X倒入水池B中至X空;14.X倒满,70毫升;15.X倒入水池B中至X空。15次即可完成,答案为A项。
55、办公室有甲、乙、丙、丁4位同志,甲比乙大5岁,丙比丁大2岁。丁三年前参加工作,当时22岁。他们四人现在的年龄之和为127岁。那么乙现在的年龄是_____。
A: 25岁B: 27岁C: 35岁D: 40岁
参考答案: C 本题解释:正确答案是C考点年龄问题解析丁3年前22岁,则现在25岁,丙比丁大2岁,丙现在27岁,甲、乙年龄和为127-(25+27)=75岁,甲比乙大5岁,则乙现在的年龄是(75-5)÷2=35岁。故正确答案为C。
56、(2005广东下,第11题)要在一块边长为48米的正方形地里种树苗,已知每行相距3米,每竖列相距6米,四角各种一棵树,问一共可种多少棵树苗?_____
A: 128棵B: 132棵C: 153棵D: 157棵
参考答案: C 本题解释:参考答案:C题目详解:根据“每横行相距3米”、“四角各种一棵树”可知,应使用不封闭植树理论,且为两端均植树问题。两端均植树:点数=总长÷间距+1确定总长:48确定间距:3带入公式:点数=总长÷间距+1=48÷3+1=17根据“每竖列相距6米”,“四角各种一棵树”可知,应使用不封闭植树理论,且为两端均植树问题。两端均植树:点数=总长÷间距+1确定总长:48确定间距:6带入公式:点数=总长÷间距+1=48÷6+1=9总可种树:17×9=153棵。因此,选C。考查点:数量关系>数学运算>特殊情境问题>植树问题>两端均植树
57、有11个人围成一个圆圈,依次编成1—11号,从1号起轮流表演节目,轮流的方法是:隔一个人表演一个节目,隔两个人表演一个节目,再隔一个人表演一个节目,隔两个人表演一个节目……这样轮流下去,至少要表演多少个节目,才能使每个人表演的次数同样?_____
A: 22B: 24C: 25D: 28
参考答案: A 本题解释:A【解析】本题考查的是周期问题。表演的人数共11人,且每个人表演次数相同,则至少要表演11N个节目。符合条件的只有A。
58、有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是_____。
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。
59、有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率相同且不变,那么修完这段公路实际用_____。
A: 19天B: 18天C: 17天D: 16天
参考答案: A 本题解释:正确答案是A考点工程问题解析解析1:设总工程为300,则每人每天工作量为300÷15÷20=1。第一阶段3天20人共完成工作量为3×20=60,第二阶段工作量为300-60=240,剩余15人每天完成工作量为15,还需240÷15=16天,则总共需3+16=19天。解析2:去其他工地的5人12天共完成工作量为5×12=60,需要剩余的15人工作60÷15=4天,则修完这条公路总共需要15+4=19天。故正确答案为A。标签赋值思想
60、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时,假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需x小时,则x满足的方程为_____。
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点行程问题解析
因此正确答案为D。秒杀技在顺流或逆流的行程过程中,建立关系式时不会对时间相加减,而只能对速度相加减,因此选项A、B不符合;船在静水中的速度必然介于逆流速度和顺流速度之间,因此选项C不符合,而选项D符合。故正确答案为D。
61、甲乙丙的速度之比为3:4:5,经过相同的一段路,三人所用时间之比:_____
A: 3:4:5 B: 5:4:3 C: 20:15:12 D: 12:8:5
参考答案: C 本题解释:C【解析】根据公式“时间=路程÷速度”可知,经过相同的路程,甲、乙、丙的时间比为1/3:1/4:1/5=20:15:12。
62、甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。问乙容器中盐水的浓度是多少?_____
A: 9.6%B: 9.8%C: 9.9%D: 10%
参考答案: A 本题解释:正确答案是A考点浓度问题解析解析1:
解析2:设乙浓度为C,由十字交叉法得甲、乙质量之比为(C-8.2%):(8.2%-4%)=150:450,解得C=9.6%,故正确答案为A。
63、某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?_____
A: 500B: 600C: 400D: 450
参考答案: B 本题解释:【解析】B。25×24=600
64、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能? _____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:答案:B 解析:根据题意,倒数第二个数字有0、2.、4、8四种可能;倒数第三个数字同样有4种可能(只需与倒数第二个数字不同即可),故该手机号为4×4=16种可能。
65、(2009山东,第119题)某工程项目由甲项目公司单独做需4天完成,由乙项目公司单独做需6天才能完成,甲、乙、丙三个公司共同做2天就可以完成,现因交工日期在即,需多公司合作,但甲公司因故退出,则由乙、丙公司合作完成共需多少天?_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:参考答案:B题目详解:假设工程总量为“12”,由题意易知:甲的效率为
,乙的效率为
,甲、乙、丙的效率和为
,从而我们知道丙的效率为
。因此,乙、丙合作完成需要
(天)。因此,选B。考查点:数量关系>数学运算>工程问题>合作完工问题
66、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:正确答案是B考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
67、2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为_____。
A: 2003B: 2004C: 2005D: 2006
参考答案: B 本题解释:正确答案是B考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
68、一只小鸟离开在树枝上的鸟巢,向北飞了20米,之后又向东飞了20米,然后又向上飞了20米。最后,它沿着到鸟巢的直线飞回了家。请问小鸟飞行的总长度与下列哪个最接近?_____
A: 34米B: 80米C: 94米D: 100米
参考答案: C 本题解释:C。
69、某企业有甲、乙、丙三个部门,已知三个部门员工的人数比为4:5:6,平均年龄是34岁,甲部门员工的平均年龄是30岁,丙部门员工的平均年龄是20岁。问乙部门员工的平均年龄是多少岁?_____
A: 45B: 48C: 51D: 54
参考答案: D 本题解释:D.【解析】这是一道加权平均数问题。设乙部门员工的平均年龄为x岁,则有
<p>具体计算时,x=54。因此,本题的正确答案为D选项。
70、某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?_____
A: 50%B: 40%C: 30%D: 20%
参考答案: A 本题解释:【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。
71、某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题_____
A: 20B: 25C: 30D: 80
参考答案: A 本题解释:答案:A 解析:不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
72、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?_____
A: 8点48分 B: 8点30分 C: 9点 D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
73、一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同走法?_____
A: 8B: 16C: 24D: 32
参考答案: A 本题解释:从A点到中间四个顶点,有4种选择;到达任一个顶点后,要么横向左转3/4圈,要么横向右转3/4圈,然后再到达B点,有2种选择。因此共有8种走法。故选A。
74、一个盒子里面装有10张奖券,只有三张奖券上有中奖标志,现在5人每人摸出一张奖券,至少有一人的中奖概率是多少?_____
A: 4/5B: 7/10 C: 8/9D: 11/12
参考答案: D 本题解释:D。【解析】至少有一人中奖,那算反面就是没有人中1-(7/10)×(6/9) ×(5/8) ×(4/7) ×(3/6)=11/12。
75、31.21×16+3.121×120﹢312.1×6.2的值是_____。
A: 3121B: 2808.9C: 4125D: 3768
参考答案: B 本题解释:正确答案是B解析原式=31.21×(16+12+62)=31.21×90=312.1×9,观察式子可知,结果是小数,故正确答案为B。计算问题
76、某企业在转型中,对部分人员进行分流,并提供了以下四种分流方案,供被分流人员人选一种。方案一:一次性领取补贴2万元,同时按现有年薪的200%一次性领取医疗费;方案二:每年按现有年薪的25%领取补贴,直到60岁退休,无医疗费;方案三:每年按现有年薪的30%领取补贴,并领取1000元的医疗费,连续领取十年;方案四:一次性领取补贴4万元,无医疗费;该企业某职工今年45岁,按规定被分流,他的现有年薪为9600元,按照分流方案规定,对他最有利的是_____。
A: 方案一B: 方案二C: 方案三D: 方案四
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析方案一:该职工可以获得20000+9600×2=39200元;方案二:该职工可以获得9600×25%×15=36000元;方案三:该职工可以获得(9600×30%+1000)×10=38800元;方案四:该职工可以获得4万元。因此对他最有利的是方案四,故正确答案为D。
77、3点19分时,时钟上的时针与分针所构成的税角为几度?_____
A: 14度B: 14.5度C: 15度D: 15.5度
参考答案: B 本题解释:【解析】B。14. 5度。一圈是360度。分针跑60分钟是一圈,360/60=每分钟6度 时针跑12小时是一圈,360/(12*60)=0.5度每分钟 3点19分时候分针跑了6*19=114。时针0.5*199=99.5。
78、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?_____
A: 120B: 144C: 177D: 192
参考答案: A 本题解释:【解析】A。设参加人数为N,列等式:63+89+47-46-2*24=N-15,N=120。
79、计算1/4+3/8+7/16+15/32+31/64+63/128+127/256+255/512+511/1024=?_____
A: 3×(513/1024)B: 3×(1023/1024)C: 4×(1/1024)D: 4×(511/1024)
参考答案: C 本题解释:【答案】C 解析∶原式=1/2-1/4+1/2-1-8+……+1/2-1/1024=4+1/1024=4×(1/1024)。
80、今有桃95个,分给甲、乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲、乙两组分到的好桃共有_____个。
A: 63B: 75C: 79D: 86
参考答案: B 本题解释:【解析】由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9χ个,乙组分到16y个,则9χ+16y=95。可以得到χ=7,y=2,则甲、乙两组分到的好桃共有9×7×(1-2/9)+16×2×1-3/16)=75(个)。故选B。
81、1992是24个连续偶数的和,这24个连续偶数中最小的一个是_____。
A: 58B: 60C: 82D: 106
参考答案: B 本题解释:参考答案:B题目详解:解法一:最小数与最大数的和为
,则最小数为
。解法二:24个连续偶数的平均值为
,则第12项为82,故最小的偶数即第1项为
。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值
82、光的速度是每秒30万千米,太阳离地球1亿5千万千米。问:光从太阳到地球要用几分钟?_____
A: 83B: 12C: 7.2D: 20
参考答案: A 本题解释:【答案】A。解析:150000000÷300000÷60=150÷3÷6=50÷6=8.3(分)。故应选择A。
83、真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是_____。
A: 6B: 5C: 7D: 8
参考答案: A 本题解释:【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。
84、已知
,若
,
_____
A: 2B:
C:
D: 2008
参考答案: B 本题解释:参考答案:B题目详解:根据题干可得:
,答案B。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
85、东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?_____
A: 80B: 110C: 90D: 100
参考答案: D 本题解释:正确答案是D考点行程问题解析题目待求两车相距多远,则需要知道两车的速度,由此返回题目寻找这两项。由题意,在中点相遇,则两车行过的距离均为120千米,且客车、货车分别行驶过4小时、3小时,因此速度分别为30千米/小时、40千米/小时。则两车若均从上午8时出发,至10时走过距离为(40+30)×2=140,于是还剩余100千米。故正确答案为D。
86、去超市购买商品,如果购买9件甲商品,5件乙商品和1件丙商品一共需要72元。如果购买13件甲商品,7件乙商品和1件丙商品一共需要86元。若甲、乙、丙三种商品各买2件,共需要多少钱?_____
A: 88B: 66C: 58D: 44
参考答案: A 本题解释:正确答案是A考点不定方程问题解析解析1:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72,13A+7B+C=86,这是一个不定方程,可设A=0,容易解出B=7,C=37,则2(A+B+C)=88(元),故正确答案为A。解析2:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72①,13A+7B+C=86②,两个方程相减得2A+B=7③,①+②-11③=B+2C=81,故(2A+B)+(B+2C)=7+81=2A+2B+2C=88(元),故正确答案为A。
87、某中介服务机构根据服务项目所涉及的金额分段按一定比例收取服务费,具体标准如下:1万元(含)以下收取50元;1万元以上、5万元(含)以下的部分收取3%;5万元以上、10万元(含)以下的部分收取2%.(如某一服务项目所涉及金额为5万元时,应收取服务费1250元。)现有一服务项目所涉及金额为10万元,那么,所收取的服务费应为:_____
A: 2250元 B: 2500元 C: 2750元 D3000元
参考答案: A 本题解释:【解析】分段按比例计算,选A.
88、小王参加了五门百分制的测验,每门成绩都是整数,其中语文94分,数学的得分最高,外语的得分等于语文和物理的平均分,物理的得分等于五门的平均分,化学的得分比外语多2分,并且是五门中第二高的得分,问小王的物理考了多少分?_____
A: 94B: 95C: 96D: 97
参考答案: C 本题解释:正确答案是C考点多位数问题解析已知语文94分,外语的得分等于语文和物理的平均分,而每门成绩都是整数,则可知物理成绩必为偶数,排除B、D;已知数学最高,化学第二高,物理为平均分,则物理不可能为94分,否则平均分大于94分,排除A。故正确答案为C。标签数字特性
89、修剪果树枝干,第1天由第1位园丁先修剪1棵,再修剪剩下的1/10,第2天由第2位园丁先修剪2棵,在修剪剩下的1/10,……,第N天由第N位园丁先修剪N棵,结果N天就完成了,问如果每个园丁修剪的棵数相等,共修剪了_____果树。
A: 46棵B: 51棵C: 75棵D: 81棵
参考答案: D 本题解释:参考答案:D本题得分:题目详解:“第N天由第N位园丁先修剪N棵,结果N天就完成”,说明第N位园丁修剪了N棵,而每位园丁修剪的棵数相等,故果树一共有
,即棵数为完全平方数;选项中只有D项是完全平方数;所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质
90、一款手机打七折后价格为1050元,则该手机原价为_____元。
A: 1100B: 1400C: 1500D: 2100
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析原价为1050÷70%=1500,故正确答案为C。
91、三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里,下次相会将在星期几?_____
A: 星期一B: 星期五C: 星期二D: 星期四
参考答案: C 本题解释:正确答案是C考点倍数约数问题解析此题乍看上去是求9、6、7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10、7、8的最小公倍数。10、7、8的最小公倍数是5×2×7×4=280。280÷7=40,所以下次相遇肯定还是星期二。秒杀技秒杀1:既然该公倍数是7的倍数,那么肯定下次相遇也是星期二。秒杀2:大刘每隔6天去一次,也即每七天去一次,因此大刘始终在星期二去,故下次相遇还会是星期二。标签最小公倍数数字特性
92、有六只水果箱,每箱里放的是同一种水果,其中只有一箱放的是香蕉,其余都是苹果和梨。已知所放水果的重量分别是1,3,12,21,17,35千克,且苹果总共的重量是梨的5倍,求香蕉有多少千克? _____
A: 3B: 21C: 17D: 35
参考答案: C 本题解释:【解析】C。解析:六箱水果的总重量为1+3+12+21+17+35=89,因为苹果是梨的5倍,所以这两种水果的重量应为6的倍数,经验证,只有香蕉为17千克时,苹果和梨的总重量为72千克可以被6整除。
93、四个连续自然数的积为3024,它们的和为_____
A: 26B: 52C: 30D: 28
参考答案: C 本题解释:【解析】C。因式分解得,原式=33×24×7,可知这几个自然数是6、7、8、9。
94、1/3,4/13,14/39,12/41以上这四个数中,最大的数为最小的数的几倍?_____
A: 7/6倍B: 14/13倍C: 41/36倍D: 287/234倍
参考答案: D 本题解释:正确答案是D考点计算问题解析
标签尾数法
95、李老师带领一班学生去种树,学生恰好被平分为4个小组,总共种树667棵,如果师生每人种树的棵数一样多,那么这个班共有学生多少人?_____
A: 28B: 36C: 22D: 24
参考答案: A 本题解释:参考答案:A题目详解:
。这个班师生每人种树的棵数只能是667的约数:1、23、29、667。当每人种23棵树时,全班人数应是
,而28恰好是4的倍数,符合题目要求。以此方法计算,每人种1或29或667棵树时,所得人数不能被4整除,故不符合题目要求。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
96、_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:正确答案是C考点计算问题解析将x=1代入,2+a-5-2=0,解得a=5,故正确答案为C。标签直接代入
97、某单位有3项业务要招标,共有5家公司前来投标、且每家公司都对3项业务发出了投标申请,最终发现每项业务都有且只有1家公司中标。如5家公司在各项业务中中标的概率均相等,问这3项业务由同一家公司中标的概率为多少:_____
A: 1/25B: 1/81C: 1/125D: 1/243
参考答案: A 本题解释:正确答案是A,解析:根据概率的定义:所求
(满足要求的情况数为5,所有随机的情况数为125种)。故正确答案为A。考点:概率问题
98、某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口_____。
A: 30万B: 31.2万C: 40万D: 41.6万
参考答案: A 本题解释:【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
99、某单位有60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人? _____
A: 12B: 14C: 15D: 19
参考答案: C 本题解释:C。【解析】有34人穿黑裤子,则有60-34=26个人穿蓝色裤子,26-12=14个人穿黑衣蓝裤,则有29-14=15个人穿黑衣黑裤
100、任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?_____ B: 1C: 2D: 3
参考答案: B 本题解释:【答案】B。解析:此题可以用特值法,选择特殊值64,反复运算后得到最终结果为1。