微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 旅客携带了30公斤行李从A地乘飞机去B地,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是多少?_____
A: 10000
B: 800
C: 600
D: 400
参考答案: B
本题解释:【解析】B。行李超重部分每千克收取120÷(30-20)=12元,则飞机票价为12÷1.5%=800元。
2、单选题 往一个圆柱形容器里注水,已知容器底面半径为10cm,高为40cm,当注入水柱高为H,水柱高由低到高变化时,水柱体积V(cm²)也随之发生变化,下列说法中,不正确的是_____。
A: V与H都是变量
B: H是自变量,V是因变量
C: V与H的关系可为V=100πH
D: V=150立方厘米时,H=25厘米
E: 当H是40厘米时,V达到最大值为4000π,此时不能再注入水
参考答案: D
本题解释:正确答案是D考点几何问题解析
3、单选题 一个班里有30名学生,有12人会跳拉丁舞,有8人会跳肚皮舞,有10人会跳芭蕾舞。问至多有几人会跳两种舞蹈?_____
A: 12人
B: 14人
C: 15人
D: 16人
参考答案: C
本题解释:正确答案是C考点统筹规划问题解析要使会跳两种舞蹈的人最多,则尽量在三种舞蹈之间进行匹配,使得两两匹配的人数之和最多。因此就不能将一种舞蹈只与另一种舞蹈进行全额匹配,例如不能将会跳肚皮舞的8人全部与拉丁舞匹配。实际上,为实现两两匹配的最多,则每组用于匹配的人数应相等或接近。从最少人数出发,会跳肚皮舞的8人,将其划分时要考虑拉丁舞和芭蕾舞人数相差2,故在划分此8人时注意这一点,可将8人划分为5人和3人。其中5人除了会肚皮舞之外,还会拉丁舞;3人会肚皮舞之外还会芭蕾舞。此时拉丁舞与芭蕾舞还各自剩7人、7人,又可以匹配得到7人既会拉丁舞又会芭蕾舞。会跳两种舞的人数至多为15人。故正确答案为C。秒杀技假定拉丁+肚皮、肚皮+芭蕾、芭蕾+拉丁的人数分别为x、y、z,则根据题意可知x+y≤8,x+z≤12,y+z≤10,求取x+y+z的最大值。对于前述三个不等式,先将不等号变为等号尝试求解一下,恰好可得x=5,y=3,z=7,代回验证可知所有条件均满足。因此可知x+y+z的最大值为15。故正确答案为C。标签构造调整
4、单选题 现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是_____。
A: 1/2
B: 1/4
C: 1/8
D: 1/16
参考答案: D
本题解释:【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。
5、单选题 某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7
B: 9
C: 10
D: 12
参考答案: C
本题解释:正确答案是C考点排列组合问题解析