1、计算题 利用如图所示装置可调控带电粒子的运动,通过改变左端粒子入射速度的大小,可以控制粒子到达右端接收屏上的位置,装置的上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,磁场区域的宽度均为h,磁场区域长均为15h,P、Q为接收屏上的二点,P位于轴线
上,Q位于下方磁场的下边界上。在纸面内,质量为m、电荷量为+q的粒子以某一速度从装置左端的中点射入,方向与轴线成370角,经过上方的磁场区域一次,恰好到达Q点。不计粒子的重力 (sin370=0.6、cos370=0.8)。问:

(1)上下两磁场间距x为多少?
(2)仅改变入射粒子的速度大小,使粒子能打到屏上P点,求此情况下入射速度大小的所有可能值。
2、简答题 如图甲所示,水平直线MN下方有竖直向上的匀强电场,场强E=
×104N/C.现将一重力不计、比荷=106C/kg的正电荷从电场中的O点由静止释放,经过t0=1×10-5s后,通过MN上的P点进入其上方的匀强磁场.磁场方向垂直于纸面向外,以电荷第一次通过MN时开始计时,磁感应强度按图乙所示规律周期性变化.
(1)求电荷进入磁场时的速度v0;
(2)求图乙中t=2×10-5s时刻电荷与P点的距离;
(3)如果在P点右方d=105cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.

3、计算题 如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的电压UAB,两板间电场可看做是均匀的,且两板外无电场,极板长L=0.2m,板间距离d=0.2m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板间中线OO′垂直,磁感应强度B=5×10-3 T,方向垂直纸面向里。现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子的速度v0=105m/s,比荷
,重力忽略不计,每个粒子通过电场区域的时间极短,此极短时间内电场可视作是恒定不变的。求:?
(1)在t=0.1s时刻射入电场的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为多少;?
(2)带电粒子射出电场时的最大速度;?
(3)在t=0.25s时刻从电场射出的带电粒子,在磁场中运动的时间。

4、简答题 如图所示,半径为r=0.10m的圆形匀强磁场区域边界跟x轴相切于坐标原点O,磁感应强度按图示规律变化,方向垂直直纸面向里,在t=0时刻由O处沿y轴正方向射入速度为v=1.0×103m/s的带负电粒子,已知粒子质量m=9.0×10-12kg,电量q=9.0×10-6C,不计粒子重力,求粒子在磁场中的运动时间和离开磁场时的位置坐标.

5、选择题 比荷为e/m的电子以速度v0。沿AB边射人边长为a的等边三角形的匀强磁场区域中,如图所示,为使电子从BC边穿出磁场,磁感应强度B的取值范围为( ? )

A.
B.
C.
D.