高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高中物理高考知识点《动能定理及应用》在线测试(2017年最新版)(二)
2017-11-10 09:11:44 来源:91考试网 作者:www.91exam.org 【

1、计算题  (10分)跳台滑雪起源于挪威,1860年挪威德拉门地区的两位农民在奥斯陆举行的首届全国滑雪比赛上表演了跳台飞跃动作,后逐渐成为一个独立的项目并得到推广。如图为一跳台的示意图,运动员从雪道的最高点A由静止开始滑下,不借助其他器械,沿雪道滑到跳台B点后,沿与水平方向成30°角斜向左上方飞出,最后落在斜坡上C点。已知A、B两点间高度差为4m,B、C点两间高度为13m,运动员从B点飞出时速度为8ms,运动员连同滑雪装备总质量为60kg。不计空气阻力,g=10m/s2。求
(1)从最高点A滑到B点的过程中,运动员克服摩擦力做的功;
(2)运动员落到C点时的速度;
(3)离开B点后,在距C点多高时,运动员的重力势能等于动能。(以C点为零势能参考面)


参考答案:(1)…………………
(2)……………
(3)……………………


本题解析:解:(1)由动能能定理得:?①………………(2分)
?②……………………(1分)
代入数据得:……………………(1分)
(2)从B到C由机械能守恒定律得:③………………(2分)
解得:………………(1分)
(3)设离C点高h时,运动员的重力势能等于其动能,由机械能守恒定律得:
④………………(2分)
解得:……………………(1分)


本题难度:简单



2、简答题  一平行板电容器的两个极板ab、cd正对竖直放置,如图所示,极板长为L.现有一电荷量大小为q、质量为m的带电质点P自紧靠ab板内侧的某点以大小为v的初速度竖直向上射出,然后以速度v从cd板的上端c处水平进入cd板右侧的正交电场、磁场中并恰好做匀速圆周运动;当带电质点P运动到cd板上小孔O处时,有另一带电质点Q由静止释放,P、Q两带电质点在小孔处发生正碰,已知Q的质量为m/3,碰撞前Q的电性与P相同且电荷量大小为q/2,碰撞后Q运动到ab板内侧的最下端b处时仍以大小为v的速度竖直离开电容器.忽略平行板电容器两端电场的边缘效应.求:
(1)电容器两板间的电场强度大小;
(2)磁场的磁感应强度大小;
(3)带电质点P最后离开平行板电容器时的速度大小.


参考答案:(1)设P从出发点运动至c阶段运动的时间为t.
其中水平加速度为ax,则在水平方向上有:ax=qEm…①
v=axt=qEmt…②
在竖直方向上有:0-v=-gt…③
t=v0g…④
联立①②③得:E=mgq…⑤
(2)设电容器两极板间的距离为d.
对P从出发点至c阶段,在水平方向上有:d=v+02t…⑥
联立④⑥解得d=v22g…⑦
设在正交电场、磁场中质点P做匀速圆周运动的半径为R,则qvB=mv2R
R=mvqB…⑧
又2R+d=l…? ⑨
联立⑦⑧⑨得:B=4mgvq(2gl-v2).
(3)设P、Q碰撞后的速度分别为v1、v2.
由动量守恒定律得,mv=mv1+m3v2
设碰撞后P、Q带电量大小分别为q1、q2,则q1+q2=32q
碰撞后Q在水平方向上有:d=v2+02t
可得:v2=v,v1=23v
0-v22=-2q2Em3d
得q1=76q,q2=q3.
则碰撞后P在水平方向上的加速度ax=q1Em=76g.
它在电容器中间运动的时间仍为t,设P射出电容器时其水平速度为vx,
则vx=v1-axt=-12v
则P射出电容器时的速度为vp,
vp=


本题解析:


本题难度:一般



3、选择题  汽车沿水平公路做匀速直线运动,下列说法正确的是
[? ]
A.汽车沿水平面运动过程中,汽车的动能与重力势能均保持不变,因而总机械能的数值不变,符合机械能守恒定律
B.汽车受到的合外力为零,因而无外力做功
C.通过每一段路程时,牵引力做功大小大于阻力做功的大小
D.因为合外力做功为零,所以动能不变


参考答案:D


本题解析:


本题难度:简单



4、简答题  如图所示,某货场利用固定于地面的、半径R=1.8m的四分之一圆轨道将质量为m1=10kg的货物(可视为质点)从高处运送至地面,已知当货物由轨道顶端无初速滑下时,到达轨道底端的速度为5m/s.为避免货物与地面发生撞击,在地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2m,质量均为m2=20kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ=0.4,木板与地面间的动摩擦因数μ2=0.1.(最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)
(1)求货物沿圆轨道下滑过程中克服摩擦力做的功
(2)通过计算判断货物是否会从木板B的右端滑落?若能,求货物滑离木板B右端时的速度;若不能,求货物最终停在B板上的位置.


参考答案:(1)设货物沿圆轨道下滑过程中克服摩擦力做的功为Wf,对货物,
由动能定理得:
m1gR-Wf=12m1v2
Wf=m1gR-12m1v2=55J
(2)当货物滑上木板A时,货物对木板的摩擦力f1=μ1m1g=40N
地面对木板A、B的最大静摩擦力f2=μ2(2m2+m1)g=50N
由于f1<f2,
此时木板A、B静止不动.?
设货物滑到木板A右端时速度为v1,由动能定理:-μ1m1gl=12m1v21-12m1v2
得:v1=3m/s
当货物滑上木板B时,地面对木板A、B最大静摩擦力f3=μ2(m2+m1)g=30N
由于f1>f3,此时木反B开始滑动.?
设货物不会从木板B的右端滑落,二者刚好相对静止时的速度为v2.
则对货物:a1=μ1g=4m/s2
v2=v1-a1t
对木板B:a2=μ1m1g-μ2(m1+m2)gm2=0.5m/s2
v2=a2t
由以上两式可得:v2=13m/s
t=23s
此过程中,s1=12(v1+v2)t=109ms2=12v2t=19m
由于s1-s2=1.0m<l,所以货物最终未从木板B上滑了,且与其右端的距离为1.0m
答:(1)货物沿圆轨道下滑过程中克服摩擦力做的功为55J;
(2)货物最终未从木板B上滑了,且与其右端的距离为1.0m


本题解析:


本题难度:一般



5、计算题  如图所示为半径R=0.50m的四分之一圆弧轨道,底端距水平地面的高度h=0.45m。一质量m=1.0kg的小滑块从圆弧轨道顶端A由静止释放,到达轨道底端B点的速度v = 2.0m/s。忽略空气的阻力。取g =10m/s2。求:

(1)小滑块在圆弧轨道底端B点受到的支持力大小FN;
(2)小滑块由A到B的过程中,克服摩擦力所做的功W;
(3)小滑块落地点与B点的水平距离x。


参考答案:(1)18N(2)3J(3)0.6m


本题解析:(1)根据牛顿第二定律,   ?
解得:?
(2)根据动能定理,  ?
解得:?
(3)水平方向:  ?
竖直方向:  ?
解得:?
点评:小滑块由A到B的过程中,速度是变化的,滑块对圆弧的压力也是变化的,滑动摩擦力也是变化的,不能直接计算克服摩擦力所做的功,要根据动能定理来计算,还要注意列表达式时的正负号。


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高中物理知识点大全《牛顿第一定..

网站客服QQ: 960335752 - 14613519 - 791315772