1、计算题 如图所示,一个质量为m =2.0×10-11 kg,电荷量q=+1.0×10-5 C的带电微粒(重力忽略不计),从静止开始经U1=100V电压加速后,水平进入两平行金属板间沿竖直方向的偏转电场中,偏转电场的电压U2=100V。金属板长L=20cm,两板间距d =
cm。求:
(1)微粒进入偏转电场时的速度v0大小;
(2)微粒射出偏转电场时的偏转角θ;
(3)若该匀强磁场的宽度为D=
cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大。

2、选择题 如图所示,△ABC为与匀强磁场垂直的边长为a的等边三角形,磁场垂直纸面向外,比荷为e/m的电子以速度v0从A点沿AB方向射入磁场,现欲使电子能经过BC边,则磁感应强度B的取值应为( )
A.B>
B.B<
C.B<
D.B>
3、计算题 如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xy平面向外。P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点。A是一块平行于x轴的挡板,与x轴的距离为h/2,A的中点在y轴上,长度略小于a/2。带电粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变。质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点,不计重力,求粒子入射速度的所有可能值。

4、计算题 如图,一束电子(电量为e)以速度v0垂直射入磁感应强度为B,宽为d的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求:
(1)电子的质量是多少?
(2)穿过磁场的时间是多少?
(3)若改变初速度,使电子刚好不能从A边射出,则此时速度v是多少?

5、计算题 (18分)如图所示装置的左半部分为速度选择器,相距为d的两块平行金属板分别连在电压可调的电源两极上(上板接正极),板间存在方向垂直纸面向里、磁感应强度为B0的匀强磁场;右半部分为一半径为R的半圆形磁场区域,内有垂直纸面向外、磁感应强度为B的匀强磁场.矩形abcd相切于半圆,小孔M、N连线延长线经过圆心O点且与ad垂直.一束质量为m、带电量为+q的离子(不计重力)以不同速率沿MN方向从M孔射入.

(1)金属板间电压为U0时,求从N孔射出的离子的速度大小;
(2)要使离子能打到ab上,求金属板间电压U的取值范围.