1、计算题 如图甲所示,M和N是相互平行的金属板,OO1O2为中线,O1为板间区域的中点,P是足够大的荧光屏,带电粒子连续地从O点沿OO1方向射入两板间。
(1)若只在两板间加恒定电压U,M和N相距为d,板长为L(不考虑电场边缘效应)。若入射粒子是电量为e、质量为m的电子,试求能打在荧光屏P上偏离点O2最远的电子的动能。
(2)若两板间只存在一个以O1点为圆心的圆形匀强磁场区域,磁场方向垂直纸面向里,已知磁感应强度B=0.50T,两板间距d=cm,板长L=1.0cm,带电粒子质量m=2.0×10-25 kg,电量q=8.0×10-18 C,入射速度v=
×105m/s。若能在荧光屏上观察到亮点,试求粒子在磁场中运动的轨道半径r,并确定磁场区域的半径R应满足的条件。
(3)若只在两板间加如图乙所示的交变电压u,M和N相距为d,板长为L(不考虑电场边缘效应)。入射粒子是电量为e、质量为m的电子。某电子在t0=
时刻以速度v0射入电场,要使该电子能通过平行金属板,试确定U0应满足的条件。

2、简答题 如图所示,质量为m.电荷量为e的电子从坐标原点0处沿xOy平面射人第一象限内,射入时的速度方向不同,但大小均为v0.已知包括原点O在内的圆形区域内有方向垂直于xOy平面向里的匀强磁场,磁感应强度大小为B,这些电子穿出磁场后都能垂直打在与y轴平行的荧光屏MN上,屏MN与y轴间的距离等于电子在磁场中做圆周运动的半径的2倍(不计电子的重力以及电子间相互作用).
(1)在O点沿y轴正方向进入磁场的电子经多长时间打在屏上?
(2)若电子穿出磁场时的位置坐标为(x,y),试写出x与y应满足的方程式,并分析指出圆形磁场区的圆心位置坐标和半径;
(3)求这些电子在磁场中运动范围的面积.
3、选择题 如图所示,Ⅰ、Ⅱ、Ⅲ是竖直平面内三个相同的半圆形光滑轨道,K为轨道最低点,Ⅰ处于匀强磁场中,Ⅱ和Ⅲ处于匀强电场中,三个完全相同的带正电小球a、b、c从轨道最高点自由下滑至第一次到达最低点K的过程中,下列说法正确的是( )

A.在K处球a速度最大
B.在K处球b对轨道压力最大
C.球b需要的时间最长
D.球c机械能损失最多
4、选择题 如图所示,在OA和OC两射线间存在着匀强磁场,∠AOC为30°,正负电子(质量、电荷量大小相同,电性相反)以相同的速度均从M点以垂直于OA的方向垂直射入匀强磁场,下列说法可能正确的是

A.若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为3∶1
B.若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为6∶1
C.若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶1
D.若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶6