1、单选题 四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式_____。
A: 60种
B: 65种
C: 70种
D: 75种
参考答案: A
本题解释:正确答案:A解析:本题属于排列组合题。我们可以这样想,第n次传球后,球不在甲手中的传球方法,第n+1次传球后,球就可能回到甲手中,所以只需求出第4次传球后,球不在甲手中的传法有多少种。可以列表:从第n次传球、传球的方法、球在甲手中的传球方法、球不在甲手中的传球方法这几个方面进行列表:因为第四次传球不能传给甲,所以本题要分情况讨论:首先,第一次传球甲有3种选择(3),接下来第一种情况:.第二次传球若回到甲手中(1)——第三次传球人有3种选择(3)——第四次传球的人有2种选择,因为不能传给甲(2)。第二种情况:第二次传球没有传给甲(2)——第三次传球传给了甲(1)——第四次传球的人有3种选择(3)。第三种情况:第二次传球没有传给甲(2)——第三次传球也没有传给甲(2)——第四次传球的人有2种选择,因为不能传给甲(2)。综上所述:总传球方式数为3*1*3*2+3*2*1*3+3*2*2*2=60。故答案为A。
2、单选题 三位数的自然数N满足:除以6余3,除以5余3,除以4也余3,则符合条件的自然数N有几个?_____
A: 8
B: 9
C: 15
D: 16
参考答案: C
本题解释:正确答案是C考点余数与同余问题解析由题意可知满足同余情形,例如此题”三位自然数N除以6余3,除以5余3,除以4也余3”,可见余数恒为3,则取3,因此N的表达式为60n+3,其中60为6、5、4的最小公倍数,根据题目中的N为三位数,可得不等式100≤60n+3≤999,解得2≤n≤16,因此符合条件的自然数有15个,故正确答案为C选项。注:同余问题需要如下口诀:余同取余,和同加和,差同减差,最小公倍数做周期。口诀解释:余同取余,例如本题,余数恒为3,则取3;合同加和,例如”一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如”一个数除以7余3,除以6余2,除以5余1”。可见除数和余数的差相同,取此差4,被除数的表达式为210-4,其中210为5、6、7的最小公倍数。秒杀技根据题目,符合要求的数出现的周期为6、5、4的最小公倍数60,也即每60个连续自然数中必然有一个符合要求,三位数共有900个,因此符合要求的三位数共有900÷60=15(个),故正确答案为C选项。标签最小公倍数同余问题
3、单选题 甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是_____。
A: 15:11
B: 17:22
C: 19:24
D: 21:27
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析设甲步行X小时,乙步行Y小时。故可得方程4X+48Y=3Y+48X,解得X:Y=45:44,所以步行距离之比4X:3Y=15:11,故正确答案为A。
4、单选题
A: A
B: B
C: C
D: D
参考答案: B
本题解释:正确答案是B考点和差倍比问题解析将各项直接代入检验,只有B项符合,(21-5)/(29-5)=16/24=2/3,故正确答案为B。标签直接代入
5、单选题 一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?_____
A: 12
B: 8
C: 6
D: 4
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。