微信搜索关注"91考试网"公众号,领30元,获取公务员、事业编、教师等考试资料40G!
1、单选题 某班有50名学生,在第一次测验中有26人得满分,在第二次测验中有21人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?_____
A: 13
B: 14
C: 17
D: 20
参考答案: B
本题解释:正确答案是B考点容斥原理问题解析本题注意按照得满分得到两个类,进行容斥原理分析。设第一次测验得满分为事件A,第二次测验得满分为事件B,则两次都得满分为A∩B,将其设为x人,得过满分为A∪B。根据公式A∪B=A+B-A∩B可得:50-17=26+21-x解得x=14,因此两次测验中都获得满分的人数是14人,故正确答案为B。标签两集合容斥原理公式
2、单选题 如图,圆拱桥的拱高BD=2m,跨度AC=8m,可以计算圆拱的半径是_____。
A: 5m
B: 10m
C: 12m
D: 17m
参考答案: A
本题解释:正确答案是A考点几何问题解析设半径为R,根据勾股定理,则有R×R-(R-2)×(R-2)=4×4,解得R=5,故正确答案为A。
3、单选题 环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑60米,乙每分钟跑50米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟?_____
A: 60
B: 36
C: 77
D: 103
参考答案: C
本题解释:正确答案是C考点行程问题解析
4、单选题 某次投资活动中在三个箱子中均放有红、黄、绿、蓝、紫、橙、白、黑8种颜色的球各一个。奖励规则如下:从三个箱子分别摸出一个球,摸出的3个球均为红球得一等奖,摸出的3个球至少有一个绿球得二等奖,摸出的3个球均为彩色球(黑、白除外)得三等奖,那么不中奖的概率是_____。
A: 0—25%之间
B: 25—50%之间
C: 50—75%之间
D: 75—100%之间
参考答案: B
本题解释:正确答案是B考点概率问题解析
5、单选题 A、B、C、D、E五个人在一次满分为100分的考试中,得分都是大于91的整数。如果A、B、C的平均分为95分,B、C、D的平均分为94分,A是第一名,E是第三名得96分。则D的得分是_____
A: 96分
B: 98分
C: 97分
D: 99分
参考答案: C
本题解释:正确答案是C考点平均数问题解析由题意,A、B、C三人的平均分为95分,则三人的分数之和为285分,B、C、D三人的平均分为94分,则三人的分数之和为282分,易知A比D多得了285-282=3分,将选项逐一代入检验,因为E是第三名得96分,所以D与E的分数不可能相同,故排除A选项;若D得98分,则A得了98+3=101分,因为满分只有100分,所以A不可能得101,故D最高能得97分,B、C、D选项中只有C符合,故正确答案为C。