1、计算题 如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场。在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电场,场强大小为E。一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当速度方向沿x轴正方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力。
(1)求磁感应强度B的大小;
(2)粒子在第一象限内运动到最高点时的位置坐标;
(3)若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角θ=30°时,求粒子从射入磁场到最终离开磁场的时间t。

2、计算题 如图所示在平面直角坐标系xOy中,,第Ⅰ、II象限存在沿y轴负方向的匀强电场,场强大小为E,第III、Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上距原点O为d的P点以速度v0垂直于y轴射入第Ⅰ象限的电场,经x轴射入磁场,已知
,
.不计粒子重力,求:

(1)粒子在磁场中运动的半径,画出带电粒子运动的轨迹。
(2)从粒子射入电场开始,求粒子经过x轴时间的可能值。
3、选择题 一带电荷量为
C的质点,只受到重力、电场力和空气阻力三个力作用,由空中的a点运动到b点,重力势能增加3J,克服空气阻力做功0.5J,机械能增加0.5J,则下列判断正确的是
A.a、b两点间的电势差
V
B.质点的动能减少2.5J
C.空间电场一定是匀强电场
D.若空间还存在匀强磁场,则质点一定是做曲线运动
4、简答题 带电量为q的粒子(不计重力),匀速直线通过速度选择器(电场强度为E,磁感应强度为B1),又通过宽度为l,磁感应强度为B2的匀强磁场,粒子离开磁场时速度的方向跟入射方向间的偏角为θ,如图所示.试证明:入射粒子的质量m=
.
5、计算题 如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30°的方向射入磁场,粒子重力不计。求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运动的时间?
(3)若带电粒子的速度是(2)中的
倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?
