1、计算题 如图所示,空间某平面内有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与平面垂直的匀强磁场,磁感应强度大小都为B。折线的顶角∠A=90°,P、Q是折线上的两点,AP=AQ=L。现有一质量为m、电荷量为q的带负电微粒从P点沿PQ方向射出,不计微粒的重力。

(1)为使微粒从P点射出后,途经折线的顶点A而到达Q点,求初速度v应满足什么条件?
(2)求第(1)问中微粒从P点到达Q点所用的时间。
2、选择题 如图所示,竖直放置的两块很大的平行金属板a、b,相距为d,ab间的电场强度为E,今有一带正电的微粒从a板下边缘以初速度v0竖直向上射入电场,当它飞到b板时,速度大小不变,而方向变成水平方向,且刚好从高度也为d的狭缝穿过b板而进入bc区域,bc宽度也为d,所加电场大小为E,方向竖直向上,磁感应强度方向垂直于纸面向里,磁感应强度大小等于
,重力加速度为g,则下列关于粒子运动的有关说法中正确的是( )
A.粒子在ab区域中做匀变速运动,运动时间为
B.粒子在bc区域中做匀速圆周运动,圆周半径r=2d
C.粒子在bc区域中做匀速圆周运动,运动时间为
D.粒子在ab、bc区域中运动的总时间为
3、计算题 在如图所示的空间区域里,x轴下方有一匀强电场,场强方向跟x轴负方向成60°角,大小为E=
×105N/C,x轴上方有一垂直纸面向里的匀强磁场,有一质子以速度v=2.0×106m/s由x轴上A点(OA=20cm)从与x轴正方向成30°角射入磁场,恰好从坐标原点O穿过x轴射入电场,已知质子质量m=1.6×10-27 kg,求
(1)匀强磁场的磁感应强度;
(2)质子经过电场后,再次射入磁场的位置和方向.

4、计算题 (14分)如左图所示,x≥0的区域内有如右图所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向。现有一质量为m、带电量为q的正电粒子,在t=0时刻从坐标原点O以速度v沿着与x轴正方向成75°角射入。粒子运动一段时间到达P点,P点坐标为(a,a),此时粒子的速度方向与
延长线的夹角为30°.粒子在这过程中只受磁场力的作用。

(1)若B为已知量,试求粒子在磁场中运动时的轨道半径R及周期T的表达式。
(2)说明在OP间运动的时间跟所加磁场的变化周期T之间应有什么样的关系才能使粒子完成上述运动。
(3)若B为未知量,那么所加磁场的变化周期T、磁感强度B0的大小各应满足什么条件,才能使粒子完成上述运动?(写出T及B0各应满足条件的表达式)
5、计算题 在xOy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图所示。现加一个垂直于xOy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x轴正方向运动,求符合该条件磁场的最小面积。
