高考省级导航

全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津
     X新疆 西藏 Y云南 Z浙江

高考物理高频试题、高中物理题库汇总-压中真题已成为一种习惯

★力学★ 运动的描述: 质点、参考系、坐标系 时间与时刻 位移与路程 速度、速率 平均速度和瞬时速度 加速度 电磁打点计时器和电火花计时器 直线运动: 匀速直线运动 匀变速直线运动 匀变速直线运动基本公式应用 匀变速直线运动导出公式应用 自由落体运动 竖直上抛运动 探究小车速度随时间变化的规律 运动的图象 S-t图象 V-t图象 追及相遇问题 相互作用: 力的描述 重力 弹力 弹性形变和弹力 探究弹力和弹簧伸长的关系 摩擦力 滑动摩擦力 静摩擦力 力的合成与分解 平行四边形定则 力的合成 力的分解 正交分解 共点力的平衡 三力平衡 动态平衡分析 力矩平衡 牛顿运动定律: 牛顿第一定律 伽利略理想实验 惯性与质量 牛顿第二定律及应用 对单物体(质点)的应用 对质点系的应用 连接体问题 牛顿定律与图象 超重失重 探究加速度与力、质量的关系 牛顿第三定律 牛顿运动定律与电磁学综合 曲线运动: 曲线运动的特点 运动的合成与分解 位移的合成与分解 速度的合成与分解 小船渡河问题分析 最短时间过河 最短位移过河 拋体运动的规律 平抛运动的概念与轨迹 平抛运动的运动规律 研究平抛运动 斜抛运动 圆周运动 描述圆周运动的物理量 匀速圆周运动 向心力与向心加速度 圆周运动实例分析 离心运动和向心运动 万有引力与航天: 开普勒定律 万有引力定律及其应用 天体的匀速圆周运动的模型 人造卫星与飞船 近地卫星和同步卫星 宇宙速度 功和机械能: 恒力做功 变力做功 功率 功率的概念 机车启动 动能与重力势能 动能 探究功与速度变化的关系 弹性势能 动能定理及应用 动能定理的理解 动能定理的综合应用 摩擦力做功 皮带模型 机械能守恒定律 机械能 机械能守恒及其条件 机械能综合应用 能量守恒定律 功能关系 动量: 动量和冲量 动量 冲量 动量定理 动量守恒定律 碰撞 弹性碰撞 非弹性碰撞 反冲 反冲现象 爆炸 机械振动、机械波: 简谐运动 简谐运动的图象 单摆 用单摆测重力加速度 阻尼振动 受迫振动和共振 机械波的形成和传播 机械波的图象 波的干涉和衍射 多普勒效应 波长、波速和频率的关系 力学综合: 子弹打木块模型 弹簧综合 应用数学知识综合 ★电磁学★ 静电现象: 电荷 库仑定律 静电场 电场强度 电场强度的叠加 电势能和电势 等势面 电势差 电势差与电场强度的关系 静电平衡 静电场中的导体 电容器 电容 平行板电容器的电容 电容器的动态分析 电荷在电场中的加速 电荷在电场中的偏转 电荷在交变电场中的运动 示波管的原理与使用 恒定电流: 电源和电流 电流和电荷量 电阻和欧姆定律 电阻、电阻率 影响导体电阻的因素、电阻定律 导体的伏安特性曲线 电阻定律 电功率和电功 焦耳定律 闭合电路的欧姆定律 电源电动势和内阻 全电路的功和能 含容电路 半导体 超导 串联和并联 电表 电流表的构造及使用 欧姆表 练习使用多用电表 磁场: 磁现象和磁场 磁场、地磁场 磁感应强度 安培分子电流假说 通电导线在磁场中受到的力 安培力及其方向 左手定则 安培力的大小 洛伦兹力 粒子在有界磁场中运动 粒子在复合场中运动 磁场和重力场的复合 磁场、电场和重力场复合 电磁场的应用 质谱仪 回旋加速器 电磁流量计 磁流体发电机 电磁感应: 电磁感应现象 楞次定律 法拉第电磁感应定律及应用 磁通量 互感与自感 电磁感应与力学 电磁感应与电路 电磁感应与图象 电磁感应中切割类问题 电磁感应中磁变类问题 交变电流: 交变电流的产生及规律 描述交变电流的物理量 周期和频率 交流电的最大值与有效值 交流电图象 变压器原理 电能的输送 电感和电容对交流电的影响 示波器的使用 门电路 传感器: 与门、或门、非门 门电路设计与应用 传感器 电磁波: 电磁场与电磁波 电磁波的发射和接收 电磁波谱 电磁场理论 复合场: ★热学★ 分子动理论: 物质由大量分子组成 用油膜法估测分子直径的大小 分子大小与阿伏加德罗常数 分子热运动 扩散 布朗运动 分子间的作用力 分子动能、分子势能、内能 温度、温度计和温标 热力学定律: 热力学第一定律 热力学第二定律 热力学第三定律 热机: 热机原理与热机效率 内燃机原理 电冰箱与空调器 固体: 晶体和非晶体 晶体的微观结构 液体: 液体的表面张力 浸润和不浸润、毛细现象 气体: 气体的状态方程 气体实验定律 饱和汽与饱和气压 空气湿度、湿度计 物态变化中的能量交换: ★光学★ 光的反射和折射: 光的反射定律 光的折射定律 折射率 测定玻璃的折射率 全反射、临界角 光的干涉和衍射: 杨氏干涉实验 用双缝干涉测量光的波长 光的衍射 衍射光栅 光的偏振和色散: 偏振现象 偏振现象的应用 光谱 光的色散、光的颜色 薄膜干涉、衍射、折射中的色散 激光: 激光及其特点 光的粒子性: 光子的动量 光电效应 康普顿效应 物质波 光的波粒二象性 ★原子物理与相对论★ 原子结构: 原子的核式结构 氢原子光谱 玻尔原子理论 原子核: 原子核的组成 原子核的衰变、半衰期 核反应方程 质能方程 放射性的应用与防护 核裂变与核聚变 探测射线的方法 夸克: 宇宙和恒星的演化 相对论: 经典时空观与相对论时空观 狭义相对论的两个基本假设 同时的相对性 时间间隔的相对性 ★物理实验★ 力学实验 热学实验 电磁学实验 光学实验 其他实验 ★物理学史和研究方法★ 物理学史: 研究方法: 整体法隔离法 控制变量法 假设法 等效法 图象法 极限法 微元法 ★单位制及量纲★ ★当代社会热点问题★ ★其他★ 能源和可持续发展:

高考物理知识大全《动能定理及应用》高频试题强化练习(2019年最新版)(八)
2019-12-13 01:48:32 【

1、简答题  如图所示,半径为r的金属圆环置于水平面内,三条电阻均为R的导体杆Oa、Ob和Oc互成120°连接在圆心O和圆环上,圆环绕经过圆心O的竖直金属转轴以大小为ω的角速度按图中箭头方向匀速转动.一方向竖直向下的匀强磁场区与圆环所在平面相交,相交区域为一如图虚线所示的正方形(其一个顶点位于O处).C为平行板电容器,通过固定的电刷P和Q接在圆环和金属转轴上,电容器极板长为l,两极板的间距为d.有一细电子束沿两极板间的中线以大小为v0(v0>

2ωl
π
)的初速度连续不断地射入C.
(1)射入的电子发生偏转时是向上偏转还是向下偏转?
(2)已知电子电量为e,质量为m.忽略圆环的电阻、电容器的充电放电时间及电子所受的重力和阻力.欲使射入的电子全部都能通过C所在区域,匀强磁场的磁感应强度B应满足什么条件?


参考答案:(1)根据右手定则判断可知,三个导体杆产生的感应电动势都指向O点,O点相当于电源的正极,则电容器上板电势高于下板电势,电场方向向下,故射入的电子发生偏转时是向上偏转.?①
(2)当导体杆处于磁场中时,感应电动势 E=Br.v②
导体杆转动的平均速度.v=12r?ω
所以,E=12Br2ω?③
此时,磁场中导体杆的电阻为内电阻,其余的电阻为外电阻,电容器的电压 U=R/2R+R/2E=13E④
射入的电子在两极板间运动 l=v0t⑤
因为v0>2ωlπ,所以t<π2ω⑥
而π2ω就是每条导体杆在磁场中运动的时间,因此有部分电子在两极板间运动的时间内,极板间的电场始终存在,这部分电子在极板间的偏转量最大.
设电子恰好能离开通过C,有d2=12at2⑦
而   a=eUmd⑧
由以上各式得 B=6mv20d2eωr2l2⑨
磁感强度B应满足的条件是 B<6mv20d2eωr2l2⑩
答:
(1)射入的电子发生偏转时向上偏转.
(2)欲使射入的电子全部都能通过C所在区域,匀强磁场的磁感应强度B应满足的条件是:B<6mv20d2eωr2l2.


本题解析:


本题难度:一般



2、选择题  如图所示,一轻弹簧左端与物体A相连,右端与物体B相连,开始时,A、B均在粗糙水平面上不动,弹簧处于原长状态.在物体B上作用一水平向右的恒力F,使物体A、B向右运动.在此过程中,下列说法中正确的为(  )
A.合外力对物体A所做的功等于物体A的动能增量
B.外力F做的功与摩擦力对物体B做的功之和等于物体B的动能增量
C.外力F做的功及摩擦力对物体A和B做功的代数和等于物体A和B的动能增量及弹簧弹性势能增量之和
D.外力F做的功加上摩擦力对物体B做的功等于物体B的动能增量与弹簧弹性势能增量之和



参考答案:A、由动能定理可知,合外力对物体A所做的功等于物体A的动能增量,故A正确;
B、外力F做的功、弹簧弹力对B做的功、摩擦力对物体B做的功之和等于物体B的动能增,故B错误;
C、外力F做的功及摩擦力对物体A和B做功的代数和等于物体A和B的动能增量及弹簧弹性势能增量之和,故C正确,D错误;
故选AC.


本题解析:


本题难度:简单



3、简答题  如图所示,水平地面上OP段是粗糙的,OP长为L=1.6m,滑块A、B与该段的动摩擦因数都为μ=0.5,水平地面的其余部分是光滑的.滑块B静止在O点,其质量mB=2kg.滑块A在O点左侧以v0=5m/s的水平初速度向右运动,并与B发生碰撞.A的质量是B的K(K取正整数)倍,滑块均可视为质点,取g=10m/s2.
(1)若滑块A与B发生完全非弹性碰撞,求A、B碰撞过程中损失的机械能;
(2)若滑块A、B构成的系统在碰撞过程中没有机械能损失,试讨论K在不同取值范围时滑块A克服摩擦力所做的功.


参考答案:(1)设滑块A碰B后的共同速度为v,AB碰撞过程中损失的机械能为△E
由动量守恒定律有?mAv0=(mA+mB)v?①
由能量守恒定律有△E=12mAv2-12(mA+mB?)v2?②
联立①②式并代入数据解得?△E=25KK+1J?③
(2)设碰撞后A、B速度分别为vA、vB,且设向右为正方向,由于弹性碰撞,则有:
? mAv0=mAvA+mBvB?④
? 12mAv02=12mAv?2A+12mBv?2B?⑤
联立④⑤式并代入数据解得?v?A=5(K-1)K+1m/s?⑥
? v?B=10KK+1m/s?⑦
假设滑块A、B都能在OP段滑动,滑块A、B在OP段的加速度(aA=aB=μg)相等,由⑥⑦式知在任意时刻vB>vA,滑块A、B不会再一次发生碰撞.
由题知,当滑块A刚好能够到达P点有?12mAv2A=μmAgL? ⑧
代入数据解得K? ⑨
讨论:
(1)当K=1?时,vA=0,滑块A停在O点,A克服摩擦力所做的功为WfA=0? ⑩
(2)当1<K≤9时,滑块A停在OP之间,A克服摩擦力所做的功为WfA=12mAv2A=25K(K-1K+1)2J?(11)
(3)当K>9时,滑块A从OP段右侧离开,A克服摩擦力所做的功为WfA=μmAgL=16KJ?(12)
答:
(1)若滑块A与B发生完全非弹性碰撞,A、B碰撞过程中损失的机械能为25KK+1;
(2)若滑块A、B构成的系统在碰撞过程中没有机械能损失,滑块A克服摩擦力所做的功情况有:
? (1)当K=1 时,vA=0,滑块A停在O点,A克服摩擦力所做的功为WfA=0?
? (2)当1<K≤9时,滑块A停在OP之间,A克服摩擦力所做的功为WfA=12mAv2A=25K(K-1K+1)2J?
? (3)当K>9时,滑块A从OP段右侧离开,A克服摩擦力所做的功为WfA=μmAgL=16KJ


本题解析:


本题难度:一般



4、选择题  一辆汽车以v1=6m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6m,如果改以v2=8 m/s的速度行驶时,同样情况下急刹车后滑行的距离s2为
A.6.4 m
B.5.6 m
C.7.2 m
D.10.8 m


参考答案:A


本题解析:急刹车后,车只受摩擦力的作用,且两种情况下摩擦力大小是相同的,汽车的末速度皆为零.设摩擦力为F,根据动能定理得:-Fs1=0-mv12,-Fs2=0-mv22.两式相除得:,故得汽车滑行距离s2=×3.6 m=6.4 m.
思路分析:急刹车后,车只受摩擦力的作用,且两种情况下摩擦力大小是相同的,汽车的末速度皆为零.设摩擦力为F,根据动能定理分析
试题点评:本题考查了动能定理的应用


本题难度:一般



5、计算题  (14分)如图甲所示是一打桩机的简易模型。质量m=1kg的物体在拉力F作用下从与钉子接触处由静止开始运动,上升一段高度后撤去F,到最高点后自由下落,撞击钉子,将钉子打入一定深度。物体上升过程中,机械能E与上升高度h的关系图象如图乙所示。不计所有摩擦,g取10m/s2。求:

(1)物体上升到1m高度处的速度;
(2)物体上升1 m后再经多长时间才撞击钉子(结果可保留根号);
(3)物体上升到0.25m高度处拉力F的瞬时功率。


参考答案:(1)2m/s?(2) t=s (3)12W


本题解析:⑴设物体上升到h1=1m处的速度为v1,由图乙知?(2分)
解得? v1=2m/s?(1分)⑵解法一:由图乙知,物体上升到h1=1m后机械能守恒,即撤去拉力F,物体仅在重力作用下先匀减速上升,至最高点后再自由下落.设向上减速时间为t1,自由下落时间为t2
对减速上升阶段有??解得? t1=0.2s? 1分
减速上升距离?=0.2m? 1分
自由下落阶段有??1分?解得?s? 1分
即有 t=t1+t2=s? 1分
解法二:物体自h1=1m后的运动是匀减速直线运动,设经t时间落到钉子上,则有?3分
解得? t=s? 2分
(3)对F作用下物体的运动过程,根据功能量关系有?1分
由图象可得,物体上升h1=1m的过程中所受拉力F=12N?1分
物体向上做匀加速直线运动,设上升至h2=0.25m时的速度为v2,加速度为a。根据牛顿第二定律 有??1分
根据运动学公式有??1分
瞬时功率? P=Fv2?1分
解得? P=12W? 1分


本题难度:一般



】【打印繁体】 【关闭】 【返回顶部
下一篇高考物理答题模板《牛顿运动定律..

问题咨询请搜索关注"91考试网"微信公众号后留言咨询