1、简答题 如图,质量均为m的两个小球A、B固定在弯成120°角的绝缘轻杆两端,OA和OB的长度均为l,可绕过O点且与纸面垂直的水平轴无摩擦转动,空气阻力不计.设A球带正电,B球带负电,电量均为q,处在竖直向下的匀强电场中.开始时,杆OB与竖直方向的夹角θ0=60°,由静止释放,摆动到θ=90°的位置时,系统处于平衡状态,求:
(1)匀强电场的场强大小E;
(2)系统由初位置运动到平衡位置,重力做的功Wg和静电力做的功We;
(3)B球在摆动到平衡位置时速度的大小v.
2、计算题 如图所示,竖直放置的两平行带电金属板间的匀强电场中有一根质量为m的均匀绝缘杆,上端可绕轴O在竖直平面内转动,下端固定一个不计重力的点电荷A,带电量+q。当板间电压为U1时,杆静止在与竖直方向成
=45°的位置;若平行板以M、N为轴同时顺时针旋转
=15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。

某同学是这样分析求解的:
两种情况中,都有力矩平衡的关系。设杆长为L,两板间距为d,当平行板旋转后,电场力就由
变为
,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
你觉得他的分析是否正确?如果认为是正确的,请继续解答;如果认为有错误之处,请说明理由并进行解答。
3、简答题 半径分别为r=0.1m和R=2r=0.2m的两个质量不计的圆盘,共轴固定连接在一起,可以绕水平轴O无摩擦转动,大圆盘的边缘上固定有一个可看作质点的质量m=0.1kg的小球A,小圆盘上绕有细线,细线的另一端与放在光滑绝缘水平桌面上的带电小物块B水平相连,物块B的质量M=0.12kg,带电量为q=1.0×10-4C,处于水平向左的匀强电场中,电场强度大小为E0=104N/C.整个系统在如图所示位置处于静止平衡状态,此时OA连线与竖直方向的夹角为θ.求:
(1)夹角θ的大小.
(2)缓慢顺时针转动圆盘,使小球A位于转轴O的正下方由静止释放,当圆盘转过45°角时物块B运动的速度多大?
(3)缓慢顺时针转动圆盘,使小球A重新回到转轴O的正下方,改变电场强度大小使其为E后由静止释放系统,物块B向左运动的最大距离s=
m,则电场强度E多大?
4、填空题 如图为悬挂街灯的支架示意图,横梁BE质量为6kg,重心在其中点。直角杆A.DC重力不计,两端用铰链连接。已知BE=3m,BC=2m,∠A.CB=30°,横梁E处悬挂灯的质量为2kg,则直角杆对横梁的力矩为_______N·m,直角杆对横梁的作用力大小为_______N。(重力加速度g=l0m/s2)
5、计算题 如图所示,OAB是一刚性轻质直角三角形支架,边长AB=0.2m,∠OAB=37°;在A、B两顶角处各固定一个大小不计的小球,质量均为1kg。支架可绕过O的水平轴在竖直平面内无摩擦地转动。(sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2)
(1)为使支架静止时AB边水平,求在支架上施加的最小力;
(2)若将支架从AB位于水平位置开始由静止释放,求支架转动过程中A处小球速度的最大值。
