GMm ?由(1)、(2)得υ-υ=(r-r)=g(r-r) 王玉的方法: mυ-mυ=mg(r-r)?得υ-υ=2g(r-r) 请分别对这两个同学的计算方法作一评价,并估算从远月点到近月点卫星动能的增量.(卫星质量为1650kg,结果保留两位有效数字)
参考答案:(1)“嫦娥一号”卫星绕月做匀速圆周运动,则运行速度 υ=2π(R+h)T?① 代入得 υ=2×3.14×1.92×106127×60=1.6×103(m/s)?② 由mg=mv2R+h得:g=υ2R+h=(1.6×103)21.92×106=1.3?(m/s2)?③ (2)张明的思路方法错误,因为卫星绕月球做椭圆运动时,在远月点和近月点做的不是匀速圆周运动,不能由万有引力等于向心力求速度. 王玉的方法正确,但所列方程式是错误的.④ 由动能定理得 △Ek=mg(r远-r近)=1650×1.3×(1.94-1.93)×105=2.1×106(J)?⑤ 答: (1)卫星在高度200km的圆轨道上运行的速度υ是1.6×103m/s,轨道处的重力加速度g是1.3m/s2. (2)张明的思路方法错误,因为卫星绕月球做椭圆运动时,在远月点和近月点做的不是匀速圆周运动,不能由万有引力等于向心力求速度.王玉的方法正确,但所列方程式是错误的.从远月点到近月点卫星动能的增量为为2.1×106J.
本题解析:
本题难度:一般
2、选择题 “神州九号”飞船于2012年6月24日顺利完成与“天宫一号”目标飞行器的“太空之吻”二者自动交会对接.其交会对接飞行过程分为远距离导引段、自主控制段、对接段、组合体飞行段和分离撤离段.则下列说法正确的是( ) A.在远距离导引段结束时,“天宫一号”目标飞行器应在“神州九号”后下方某处 B.在远距离导引段结束时,“天宫一号”目标飞行器应在“神州九号”前上方某处 C.在组合体飞行段,“神州九号”与“天宫一号”绕地球作匀速圆周运动的速度大于7.9?km/s D.分离后,“神州九号”飞船变轨降低至飞行轨道运行时,其动能比在交会对接轨道时大
参考答案:A、B:先让飞船进入较低的轨道,让飞船加速,所需要的向心力变大,万有引力不变,所以飞船做离心运动,轨道半径变大,可以实现对接,所以在远距离导引段结束时,“天宫一号”目标飞行器应在“神州九号”前上方某处.故A错误、B正确; C、根据万有引力提供向心力GMmr2=mv2r,有v=
本题解析:
本题难度:一般
3、简答题 “神舟八号”飞船与“天宫一号”目标飞器在2011年11月3日凌晨I时36分实现刚性连接,形成组合体,我国载人航天首次空间交会对接试验获得成功.
 (1)如图所示,为“神舟八号”的示意图,Pl、P2.P3、P4是四个喷气发动机,每台发动机开动时,都能向“神舟八号”提供推力,但不会使其转动.当“神舟八号”与“天宫一号”在同一轨道上运行,相距30m停泊(相对静止)时,若仅开动发动机Pl使“神舟八号”瞬间获得大于“天宫一号”的运行速度,则它们能否实现交会对接?______(填“能”或“不能”). (2)若地球表面的重力加速度为g,地球半径为R,组合体运行的圆轨道距地面的高度为h,那么,组合体绕地球运行的周期是多少?
参考答案:(1)不能,因为仅开动发动机Pl使“神舟八号”瞬间获得大于“天宫一号”的运行速度,则会由于离心运动偏离轨道 (2)设组合体圆周运动周期为T,根据万有引力和牛顿第二定律得, GmM(R+h)2=m4π2T2(R+h) 根据地球表面重力约等于万有引力,即 GMmR2=mg 联立解得:T=2π(R+h)R
本题解析:
本题难度:一般
4、简答题 已知地球半径R=6.4×106m,地面附近重力加速度g=9.8m/s2,一颗卫星在离地面高为h=3.4×106m的圆形轨道上做匀速圆周运动.求: (1)卫星运动的线速度. (2)卫星的周期.
参考答案:(1)在地面附近有:GMmR2=mg? ?① 在离地面h高处轨道上有:GMm(R+h)2=mv2R+h?② 由?①②联立得v=
本题解析:
本题难度:一般
5、选择题 地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道。已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍。关于太阳和月球对地球的引力,以下说法正确的是?(?) A.太阳对地球引力远大于月球对地球引力 B.太阳对地球引力与月球对地球引力相差不大 C.月球对地球引力要远大于太阳对地球引力 D.太阳对地球引力与月球对地球引力大小无法比较
参考答案:A
本题解析:略
本题难度:简单
|